نتایج جستجو برای: integral graphs

تعداد نتایج: 211307  

Journal: :Electronic Notes in Discrete Mathematics 2002
Zhibo Chen

A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f (u) + f (v) = f (w) for some node w in G. A node of G is called a saturated node if it is adjacent to every other node of G. We show that any integral sum graph which is not K3 has at most two saturated ...

2011
Aleksandar Ilić

The distance energy of a graph G is a recently developed energy-type invariant, defined as the sum of absolute values of the eigenvalues of the distance matrix of G. There was a vast research for the pairs and families of non-cospectral graphs having equal distance energy, and most of these constructions were based on the join of graphs. A graph is called circulant if it is Cayley graph on the ...

Journal: :Discrete Mathematics 2008
Ligong Wang Hajo Broersma Cornelis Hoede Xueliang Li Georg Still

A graph is called integral if all its eigenvalues (of the adjacency matrix) are integers. In this paper, the graphs K1,r •Kn , r ∗Kn , K1,r • Km,n , r ∗ Km,n and the tree K1,s • T (q, r,m, t) are defined. We determine the characteristic polynomials of these graphs and also obtain sufficient and necessary conditions for these graphs to be integral. Some sufficient conditions are found by using t...

Journal: :Discrete Mathematics 1999
Baogen Xu

A graph is said to be a sum graph if there exists a set S of positive integers as its node set, with two nodes adjacent whenever their sum is in S. An integral sum graph is defined just as the sum graph, the difference being that S is a subset of 2~ instead of N*. The sum number of a given graph G is defined as the smallest number of isolated nodes which when added to G result in a sum graph. T...

2008
Omran Ahmadi Ian F. Blake Igor E. Shparlinski

It is shown that only a fraction of 2−Ω(n) of the graphs on n vertices have an integral spectrum. Although there are several explicit constructions of such graphs, no upper bound for their number has been known. Graphs of this type play an important role in quantum networks supporting the so-called perfect state transfer. AMS Subject Classification: 05C50, 05C80

Journal: :Discrete Mathematics 1998
Zhibo Chen

The idea of integral sum graphs was introduced by Harary (1994). A graph G is said to be an integral sum graph if its nodes can be given a labeling f with distinct integers, so that for any two distinct nodes u and v of G, uv is an edge of G if and only if f(u) + f(v) = f(w) for some node w in G. A tree is said to be a generalized star if it can be obtained from a star by extending each edge to...

Journal: :Inf. Sci. 2014
Milan Basic

The question of perfect state transfer existence in quantum spin networks based on weighted graphs has been recently presented by many authors. We give a simple condition for characterizing weighted circulant graphs allowing perfect state transfer in terms of their eigenvalues. This is done by extending the results about quantum periodicity existence in the networks obtained by Saxena, Severini...

2005
David Forge Thomas Zaslavsky

We present dichromatic and tree-expansion polynomials of integral gain graphs that underlie the problem of counting lattice points in the complement of an integral affinographic hyperplane arrangement. This is a step towards finding the universal Tutte invariant of rooted integral gain graphs. Mathematics Subject Classifications (2000): Primary 05C22; Secondary 05C15.

Journal: :Electr. J. Comb. 2011
A. Abdollahi E. Vatandoost

A graph is called integral, if its adjacency eigenvalues are integers. In this paper we determine integral quartic Cayley graphs on finite abelian groups. As a side result we show that there are exactly 27 connected integral Cayley graphs up to 11 vertices.

Journal: :transactions on combinatorics 2012
mohsen mollahajiaghaei

a graph is called textit{circulant} if it is a cayley graph on a cyclic group, i.e. its adjacency matrix is circulant. let $d$ be a set of positive, proper divisors of the integer $n>1$. the integral circulant graph $icg_{n}(d)$ has the vertex set $mathbb{z}_{n}$ and the edge set e$(icg_{n}(d))= {{a,b}; gcd(a-b,n)in d }$. let $n=p_{1}p_{2}cdots p_{k}m$, where $p_{1},p_{2},cdots,p_{k}$ are disti...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید