نتایج جستجو برای: kuhn tucker conditions
تعداد نتایج: 851453 فیلتر نتایج به سال:
We study best approximation problems with nonlinear constraints in Hilbert spaces. The strong “conical hull intersection property” (CHIP) and the “basic constraint qualification” (BCQ) condition are discussed. Best approximations with differentiable constraints and convex constraints are characterized. The analysis generalizes some linearly constrained results of recent works [F. Deutsch, W. Li...
Our domain G = (0,L) is an interval of length L. The boundary ∂G = {0,L} are the two endpoints. We consider here as an example the case (DD) of Dirichlet boundary conditions: Dirichlet conditions at x = 0 and x = L. For other boundary conditions (NN), (DN), (ND) one can proceed similarly. In one dimension the Laplace operator is just the second derivative with respect to x: ∆u(x, t) = uxx(x, t)...
The Monge-Kantorovich problem is revisited by means of a variant of the saddle-point method without appealing to c-conjugates. A new abstract characterization of the optimal plans is obtained in the case where the cost function takes infinite values. It leads us to new explicit sufficient and necessary optimality conditions. As by-products, we obtain a new proof of the well-known Kantorovich du...
In this paper, by using a monotone iterative technique in the presence of lower and upper solutions, we discuss the existence of solutions for a new system of nonlinear mixed type implicit impulsive integro-differential equations in Banach spaces. Under wide monotonicity conditions and the noncompactness measure conditions, we also obtain the existence of extremal solutions and a unique solutio...
In this paper, we study second-order necessary optimality conditions for a discrete optimal control problem with nonconvex cost functions and state-control constraints. By establishing an abstract result on second-order necessary optimality conditions for a mathematical programming problem, we derive second-order necessary optimality conditions for a discrete optimal control problem.
Kneser's conjecture, rst proved by Lovv asz in 1978, states that the graph with all k-element subsets of f1; 2; : : : ; ng as vertices and with edges connecting disjoint sets has chromatic number n ? 2k + 2. We derive this result from Tucker's combinatorial lemma on labeling the vertices of special triangulations of the octahedral ball. By specializing a proof of Tucker's lemma, we obtain self-...
in this paper, using the idea of convexificators, we study boundedness and nonemptiness of lagrange multipliers satisfying the first order necessary conditions. we consider a class of nons- mooth fractional programming problems with equality, inequality constraints and an arbitrary set constraint. within this context, define generalized mangasarian-fromovitz constraint qualification and show t...
The chromatic polynomial PΓ(x) of a graph Γ is a polynomial whose value at the positive integer k is the number of proper kcolourings of Γ. If G is a group of automorphisms of Γ, then there is a polynomial OPΓ,G(x), whose value at the positive integer k is the number of orbits of G on proper k-colourings of Γ. It is known there are no real negative chromatic roots, but they are dense in [ 27 ,∞...
We consider Karush-Kuhn-Tucker (KKT) systems, which depend on a parameter. Our contribution concerns with the existence of solution of the directionally perturbed KKT system, approximating the given primaldual base solution. To our knowledge, we give the first explicit result of this kind in the situation where the multiplier associated with the base primal solution may not be unique. The condi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید