نتایج جستجو برای: l hausdorff metric
تعداد نتایج: 700625 فیلتر نتایج به سال:
We show that a topological space is hereditarily irresolvable if and only if it is Hausdorff-reducible. We construct a compact irreducible T1-space and a connected Hausdorff space, each of which is strongly irresolvable. Furthermore, we show that the three notions of scattered, Hausdorff-reducible, and hereditarily irresolvable coincide for a large class of spaces, including metric, locally com...
The Hausdorff–Alexandroff Theorem states that any compact metric space is the continuous image of Cantor’s ternary set C. It is well known that there are compact Hausdorff spaces of cardinality equal to that of C that are not continuous images of Cantor’s ternary set. On the other hand, every compact countably infinite Hausdorff space is a continuous image of C. Here we present a compact counta...
The theory of Hausdorff dimension provides a general notion of the size of a set in a metric space. We define Hausdorff measure and dimension, enumerate some techniques for computing Hausdorff dimension, and provide applications to self-similar sets and Brownian motion. Our approach follows that of Stein [4] and Peres [3].
We prove that each analytic set in R contains a universally null set of the same Hausdorff dimension and that each metric space contains a universally null set of Hausdorff dimension no less than the topological dimension of the space. Similar results also hold for universally meager sets. An essential part of the construction involves an analysis of Lipschitzlike mappings of separable metric s...
Kaneko and Sessa defined the concept of compatibility for multivalued mappings with Hausdorff metric and proved a coincidence point theorem. After then, Pathak defined the concept of weak compatibility and proved a coincidence theorem. In the present work, we define a new type compatibility for multivalued mappings with Hausdorff metric. This new type compatibility is different from compatibili...
We review basics concerning metric spaces from a contemporary viewpoint, and prove the important Baire category theorem, for both complete metric spaces and locally compact Hausdorff [1] spaces.
We prove a that a closed surface with a CAT(κ) metric has Hausdorff dimension = 2, and that there are uniform upper and lower bounds on the two-dimensional Hausdorff measure of small metric balls. We also discuss a connection between this uniformity condition and some results on the dynamics of the geodesic flow for such surfaces. Finally, we give a short proof of topological entropy rigidity f...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید