We consider the \(p\)-Laplacian system $$ \displaylines{ -\Delta_p u = \lambda f(v) \quad \text{in } \Omega; \cr v g(u) v=0 \text{on }\partial \Omega, }$$ where \(\lambda >0\) is a parameter, \(\Delta_p u:= \operatorname{div}(|\nabla u|^{p-2}\nabla u)\) operator for \(p > 1\) and \(\Omega\) unit ball in \(\mathbb{R}^N\) (\(N \geq 2)\). The nonlinearities \(f, g: [0,\infty) \to \mathbb{R}\...