نتایج جستجو برای: lorentzian plane

تعداد نتایج: 121928  

2009
E. Minguzzi

A classical result in Lorentzian geometry states that a strongly causal spacetime is globally hyperbolic if and only if the Lorentzian distance is finite valued for every metric choice in the conformal class. It is proven here that a non-total imprisoning spacetime is globally hyperbolic if and only if for every metric choice in the conformal class the Lorentzian distance is continuous. Moreove...

2012
C. S. BAGEWADI GURUPADAVVA INGALAHALLI

We study Ricci solitons in Lorentzian α-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a Lorentzian α-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if LV g + 2S is parallel, V is a given vector field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci solitons for (2n + 1)-dimensional Lor...

2007
R. Milson N. Pelavas

We prove that a four-dimensional Lorentzian manifold that is curvature homogeneous of order 3, or CH3 for short, is necessarily locally homogeneous. We also exhibit and classify four-dimensional Lorentzian, CH2 manifolds that are not homogeneous. Our results imply that the Singer index for four-dimensional Lorentzian manifolds is greater or equal to 2. PACS numbers: 04.20, 02.40 AMS classificat...

We study connected orientable spacelike hypersurfaces $x:M^{n}rightarrowM_q^{n+1}(c)$, isometrically immersed into the Riemannian or Lorentzian space form of curvature $c=-1,0,1$, and index $q=0,1$, satisfying the condition $~L_kx=Ax+b$,~ where $L_k$ is the $textit{linearized operator}$ of the $(k+1)$-th mean curvature $H_{k+1}$ of the hypersurface for a fixed integer $0leq k

2009
E. Minguzzi

A classical result in Lorentzian geometry states that a strongly causal spacetime is globally hyperbolic if and only if the Lorentzian distance is finite valued for every metric choice in the conformal class. It is proven here that a non-total imprisoning spacetime is causally simple if and only if for every metric choice in the conformal class the Lorentzian distance is continuous wherever it ...

2002
Valery A. Gritsenko Viacheslav V. Nikulin

We discuss a general theory of Lorentzian Kac–Moody algebras which should be a hyperbolic analogy of the classical theories of finite-dimensional semisimple and affine Kac–Moody algebras. First examples of Lorentzian Kac–Moody algebras were found by Borcherds. We consider general finiteness results about the set of Lorentzian Kac–Moody algebras and the problem of their classification. As an exa...

2001
P. Di Francesco E. Guitter

We introduce and solve a family of discrete models of 2D Lorentzian gravity with higher curvature weight, which possess mutually commuting transfer matrices, and whose spectral parameter interpolates between flat and curved space-times. We further establish a one-toone correspondence between Lorentzian triangulations and directed Random Walks. This gives a simple explanation why the Lorentzian ...

2005
J. DANIEL CHRISTENSEN

We give a short and simple proof that the Lorentzian 10j symbol, which forms a key part of the Barrett-Crane model of Lorentzian quantum gravity, is finite. The argument is very general, and applies to other integrals. For example, we show that the Lorentzian and Riemannian causal 10j symbols are finite, despite their singularities. Moreover, we show that integrals that arise in Cherrington’s w...

1999
Helga Baum

An indecomposable Riemannian symmetric space which admits nontrivial twistor spinors has constant sectional curvature. Furthermore, each homogeneous Riemannian manifold with parallel spinors is at. In the present paper we solve the twistor equation on all indecomposable Lorentzian symmetric spaces explicitly. In particular, we show that there are-in contrast to the Riemannian case-indecom-posab...

1997
Bozhidar Z. Iliev

We investigate connections between pairs of Riemannian metrics whose sum is a (tensor) product of a covector field with itself. As a special result is constructed one-to-one mapping between the classes of Euclidean and Lorentzian metrics. The existence of Lorentzian metrics on a differentiable manifold is discussed. We point the possibility that any physical theory based on Lorentzian metric(s)...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید