نتایج جستجو برای: minus domination

تعداد نتایج: 17513  

2011
Jin Feng ZHAO Bao Gen XU B. G. XU

For the terminology and notations not defined here, we adopt those in Bondy and Murty [1] and Xu [2] and consider simple graphs only. Let G = (V,E) be a graph with vertex set V = V (G) and edge set E = E(G). For any vertex v ∈ V , NG(v) denotes the open neighborhood of v in G and NG[v] = NG(v) ∪ {v} the closed one. dG(v) = |NG(v)| is called the degree of v in G, ∆ and δ denote the maximum degre...

2004
THOMAS M. LIGGETT JEFFREY E. STEIF

We prove for the contact process on Z, and many other graphs, that the upper invariant measure dominates a homogeneous product measure with large density if the infection rate λ is sufficiently large. As a consequence, this measure percolates if the corresponding product measure percolates. We raise the question of whether domination holds in the symmetric case for all infinite graphs of bounde...

Journal: :Discussiones Mathematicae Graph Theory 2005
Anders Sune Pedersen

The domination number γ(G) of a graph G is the minimum cardinality of a subset D of V (G) with the property that each vertex of V (G) − D is adjacent to at least one vertex of D. For a graph G with n vertices we define ǫ(G) to be the number of leaves in G minus the number of stems in G, and we define the leaf density ζ(G) to equal ǫ(G)/n. We prove that for any graph G with no isolated vertex, γ...

Journal: :The Iowa Review 2007

ژورنال: :مجله گیاهشناسی ایران 2011
منیژه پاکروان‏ زهرا ناظم بکائی سمن بلوریان

واریته alyssum minus (l.) rothm. var. minusبرای اولین بار از ایران گزارش می شود. واریته­ای جدید (alyssum minus var. mazandaranicum pakravan & bolourian) از شمال و غرب علاوه بر واریته­های موجود در ایران (a. minus (l.) rothm. var. minus, -var. strigosum (banks & sol.) zohary, -var. micranthum (c.a.mey.) dudley ( معرفی می شود و صفات ریخت­شناسی، گرده­شناسی و تشریحی جهت یافتن ویژگی­های جداکن...

Journal: :transactions on combinatorics 2015
roushini leely pushpam sampath padmapriea

a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...

Journal: :Discrete Applied Mathematics 1999
Jaeun Lee Moo Young Sohn Hye Kyung Kim

Dunbar et al. (1998) in Ref. [3] introduced the OI~/TLLS ck~r~in~rtio~ ~IWH/W ;,-(G) of a graph G and two open problems. In this paper, we show that for every negative integer k and positive integer m>,3. there exists a graph G with gn-th nl and ;‘(G) <k which is a positive answer for the open problem 2 in Ref. [3].

Journal: :Australasian J. Combinatorics 2009
Adriana Hansberg Lutz Volkmann

We consider finite graphs G with vertex set V (G). A subset D ⊆ V (G) is a dominating set of the graph G, if every vertex v ∈ V (G) − D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality among the dominating sets of G. In this note, we characterize the trees T with an even number of vertices such that γ(T ) = |V (T )| − 2

Journal: :Discrete Mathematics 2015
Vadim E. Zverovich

We consider two general frameworks for multiple domination, which are called 〈r, s〉-domination and parametric domination. They generalise and unify {k}-domination, k-domination, total k-domination and k-tuple domination. In this paper, known upper bounds for the classical domination are generalised for the 〈r, s〉-domination and parametric domination numbers. These generalisations are based on t...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید