نتایج جستجو برای: n convex functions
تعداد نتایج: 1458949 فیلتر نتایج به سال:
The alternating direction method of multipliers (ADMM) is widely used in solving structured convex optimization problems. Despite of its success in practice, the convergence properties of the standard ADMM for minimizing the sum of N (N ≥ 3) convex functions with N block variables linked by linear constraints, have remained unclear for a very long time. In this paper, we present convergence and...
In this manuscript, a new class of extended (m1,m2)-convex and concave functions is introduced. After some properties of (m1,m2)-convex functions have been given, the inequalities obtained with Hölder and Hölder-İşcan and power-mean and improwed power-mean integral inequalities have been compared and it has been shown that the inequality with Hölder-İşcan inequality gives a better approach than...
In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...
let $x$ be a real normed space, then $c(subseteq x)$ is functionally convex (briefly, $f$-convex), if $t(c)subseteq bbb r $ is convex for all bounded linear transformations $tin b(x,r)$; and $k(subseteq x)$ is functionally closed (briefly, $f$-closed), if $t(k)subseteq bbb r $ is closed for all bounded linear transformations $tin b(x,r)$. we improve the krein-milman theorem ...
Let X be a Hilbert space and let Cn, n = 1, . . . ,N be convex closed subsets of X . The convex feasibility problem is to find some point x ∈ N ⋂ n=1 Cn, when this intersection is non-empty. In this talk we discuss projection algorithms for finding such a feasibility point. These algorithms have wide ranging applications including: solutions to convex inequalities, minimization of convex nonsmo...
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید