نتایج جستجو برای: nanoparticles wo3
تعداد نتایج: 108534 فیلتر نتایج به سال:
WO3 is a promising candidate for a photoanode material in an acidic electrolyte, in which it is more stable than most metal oxides, but kinetic limitations combined with the large driving force available in the WO3 valence band for water oxidation make competing reactions such as the oxidation of the acid counterion a more favorable reaction. The incorporation of an oxygen evolving catalyst (OE...
In this study, Bi2S3 sensitive layer has been grown on the surface of WO3 nanoplate arrays via an in situ approach. The characterization of samples were carried out using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and ultraviolet-visible absorption spectroscopy (UV-vis). The results show that the Bi2S3 layer is uniformly formed on the sur...
Tungsten oxide (WO3-x ), a new alternative to conventional semiconductor material, has attracted numerous attentions owning to its widespread potential applications. Various methods have been reported for the synthesis of WO3-x nanostructures such as nanowires or nanodots. However, templates or surfactants are often required for the synthesis, which significantly complicate the process and hind...
Mesoporous tungsten trioxide (WO3) was prepared from tungstic acid (H2WO4) as a tungsten precursor with dodecylamine (DDA) as a template to guide porosity of the nanostructure by a solvothermal technique. The WO3 sample (denoted as WO3-DDA) prepared with DDA was moulded on an electrode to yield efficient performance for visible-light-driven photoelectrochemical (PEC) water oxidation. Powder X-r...
WO3-treated fullerene/TiO2 composites (WO3-fullerene/TiO2) were prepared using a sol-gel method. The composite obtained was characterized by BET surface area measurements, X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, transmission electron microscopy, and UV-vis analysis. A methyl orange (MO) solution under visible light irradiation was used to determine the...
We report growth of tungsten diselenide (WSe2) nanotubes by chemical vapor deposition with a two-zone furnace. WO3 nanowires were first grown by annealing tungsten thin films under argon ambient. WSe2 nanotubes were then grown at the tips of WO3 nanowires through selenization via two steps: (i) formation of tubular WSe2 structures on the outside of WO3 nanowires, resulting in core (WO3)-shell (...
This manuscript demonstrates the design, modification and initial investigation of a rotary furnace for the manufacturing of inorganic fullerene WS2 nanoparticles. Different preparation methods starting with various precursors have been investigated, of which the gas-solid reaction starting with WO3 nanoparticles was the most efficient technique. Furthermore, the influence of temperature, react...
The crystal structures of different forms of TiO2 and those of BaTiO3, ZnO, SnO2, WO3, CuO, Fe2O3, Fe3O4, ZrO2 and Al2O3 nanoparticles have been deduced by powder X-ray diffraction. Their optical edges have been obtained by UV-visible diffuse reflectance spectra. The photocatalytic activities of these oxides and also those of SiO2 and SiO2 porous to oxidize iodide ion have been determined and c...
A two-step procedure was implemented to obtain tungsten oxide nanowires (WO3) doped with cobalt or silver oxide nanoparticles from metal-organic precursors, W(CO)6, Co(acac)2 and Ag(acac)2. In the first step, nanowires were grown at 400 °C using an aerosol assisted chemical vapor deposition system (AA-CVD) and subsequently annealed at 500 °C for 2 h. In the second step, metal loading (at differ...
WO3 thin films were deposited by pulsed laser deposition (PLD) on glass substrates at 100 mTorr oxygen pressure. Monodispersed palladium nanoparticles (50 nm) were synthesized by hydrogen reduction of PdCl2 drop-casted on the surface of the films. For oxyhydrogen detection, first a saturated coloration by 10%H2/Ar was prepared. Then different oxygen flow with certain O2:H2 ratios were exposed t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید