نتایج جستجو برای: neuro fuzzy approximators
تعداد نتایج: 104663 فیلتر نتایج به سال:
In this paper, a novel self-generating neuro-fuzzy system through reinforcements is proposed. Not only the weights of the network but also the architecture of the whole network are all learned through reinforcement learning. The proposed neuro-fuzzy system is applied to the inverted pendulum system to demonstrate its performance. Key-words: reinforcement learning, neural network, neuro-fuzzy sy...
This paper presents a novel adaptive neuro-fuzzy based speed controller for vector controlled induction motor drive. The proposed neuro-fuzzy controller incorporates fuzzy logic algorithm with a five-layer artificial neural network (ANN) structure. The conventional PI controller is replaced by Adaptive Neuro-Fuzzy Inference System (ANFIS), which tunes the fuzzy inference system with hybrid lear...
The integration of neural networks and fuzzy inference systems could be formulated into three main categories: cooperative, concurrent and integrated neuro-fuzzy models. We present three different types of cooperative neuro-fuzzy models namely fuzzy associative memories, fuzzy rule extraction using self-organizing maps and systems capable of learning fuzzy set parameters. Different Mamdani and ...
Article history: Received 20 February 2011 Accepted 4 April 2011 Available online xxxx
Maintenance plays now a critical role in manufacturing for achieving important cost savings and competitive advantage while preserving product conditions. It suggests moving from conventional maintenance practices to predictive strategy. Indeed the maintenance action has to be done at the right time based on the system performance and component Remaining Useful Life (RUL) assessed by a prognost...
Electrical conductivity is an important indicator for water quality assessment. Since the composition of mineral salts affects the electrical conductivity of groundwater, it is important to understand the relationships between mineral salt composition and electrical conductivity. In this present paper, we develop an adaptive neuro-fuzzy inference system (ANFIS) model for groundwater electrical ...
We designed a neuro fuzzy control strategy for control of cyclical leg movements of paraplegic subjects. The cyclical leg movements were specified by three ‘swing phase objectives’, characteristic of natural human gait. The neuro fuzzy controller is a combination of a fuzzy logic controller and a neural network, which makes the controller self tuning and adaptive. Two experiments have been perf...
Preliminary note The main goal of each technologist is the prediction of technological parameters by fulfilling the set design and technological demands. The work of the technologist is made easier by acquired knowledge and previous experience. A plan of input-output data was made by using the hybrid system of modelling ANFIS (Adaptive Neuro-Fuzzy Inference System) based on the results of seam ...
Accurate and robust estimation of applied forces in Robotic-Assisted Minimally Invasive Surgery is a very challenging task. Many vision-based solutions attempt to estimate the force by measuring the surface deformation after contacting the surgical tool. However, visual uncertainty, due to tool occlusion, is a major concern and can highly affect the results’ precision. In this paper, a novel de...
This paper describes combined approaches of data preparation, neural network analysis, and fuzzy inferencing techniques (which we collectively call neuro-fuzzy engineering) to the problem of environmental modelling. The overall neuro-fuzzy architecture is presented, and specific issues associated with environmental modelling are discussed. A case study that shows how these techniques can be com...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید