نتایج جستجو برای: newton iteration method
تعداد نتایج: 1663489 فیلتر نتایج به سال:
A new orthogonal projection method for computing the minimum distance between a point and a spatial parametric curve is presented. It consists of a geometric iteration which converges faster than the existing Newton’s method, and it is insensitive to the choice of initial values. We prove that projecting a point onto a spatial parametric curve under the method is globally second-order convergence.
Although quasi-Newton algorithms generally converge in fewer iterations than conjugate gradient algorithms, they have the disadvantage of requiring substantially more storage. An algorithm will be described which uses an intermediate (and variable) amount of storage and which demonstrates convergence which is also intermediate, that is, generally better than that observed for conjugate gradient...
In this paper, we present a new modification of Chebyshev-Halley method, free from second derivatives, to solve nonlinear equations. The convergence analysis shows that our modification is third-order convergent. Every iteration of this method requires one function and two first derivative evaluations. So, its efficiency index is $3^{1/3}=1.442$ that is better than that o...
By making use of tools from convex analysis, we formulate an inexact NewtonLandweber iteration method for solving nonlinear inverse problems in Banach spaces. The method consists of two components: an outer Newton iteration and an inner scheme. The inner scheme provides increments by applying Landweber iteration with non-smooth uniformly convex penalty terms to local linearized equations. The o...
We consider empirical risk minimization for large-scale datasets. We introduce Ada Newton as an adaptive algorithm that uses Newton’s method with adaptive sample sizes. The main idea of Ada Newton is to increase the size of the training set by a factor larger than one in a way that the minimization variable for the current training set is in the local neighborhood of the optimal argument of the...
We consider projected Newton-type methods for solving large-scale optimization problems arising in machine learning and related fields. We first introduce an algorithmic framework for projected Newton-type methods by reviewing a canonical projected (quasi-)Newton method. This method, while conceptually pleasing, has a high computation cost per iteration. Thus, we discuss two variants that are m...
We consider a large-scale convex minimization problem with nonnegativity constraints that arises in astronomical imaging. We develop a cost functional which incorporates the statistics of the noise in the image data and Tikhonov regularization to induce stability. We introduce an efficient hybrid gradient projection-reduced Newton (active set) method. By “reduced Newton” we mean taking Newton s...
We investigate effectiveness of an acceleration method applied to the modified Picard iteration for simulations of variably saturated flow. We solve nonlinear systems using both unaccelerated and accelerated modified Picard iteration as well as Newton’s method. Since Picard iterations can be slow to converge, the advantage of acceleration is to provide faster convergence while maintaining advan...
We develop general approximate Newton methods for solving Lipschitz continuous equations by replacing the iteration matrix with a consistently approximated Jacobian, thereby reducing the computation in the generalized Newton method. Locally superlinear convergence results are presented under moderate assumptions. To construct a consistently approximated Jacobian, we introduce two main methods: ...
The paper deals with the multilevel solution of elliptic partial differential equations (PDEs) in a finite element setting: uniform ellipticity of the PDE then goes with strict monotonicity of the derivative of a nonlinear convex functional. A Newton multigrid method is advocated, wherein linear residuals are evaluated within the multigrid method for the computation of the Newton corrections. T...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید