نتایج جستجو برای: nil clean rings
تعداد نتایج: 85385 فیلتر نتایج به سال:
A ring $R$ with identity is called ``clean'' if $~$for every element $ain R$, there exist an idempotent $e$ and a unit $u$ in $R$ such that $a=u+e$. Let $C(R)$ denote the center of a ring $R$ and $g(x)$ be a polynomial in $C(R)[x]$. An element $rin R$ is called ``g(x)-clean'' if $r=u+s$ where $g(s)=0$ and $u$ is a unit of $R$ and, $R$ is $g(x)$-clean if every element is $g(x)$-clean. In this pa...
a ring $r$ is a strongly clean ring if every element in $r$ is the sum of an idempotent and a unit that commutate. we construct some classes of strongly clean rings which have stable range one. it is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.
Let R be an associative ring with unity. An element a in R is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von Neumann) element in R. If every element of R is r-clean, then R is called an r-clean ring. In this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. Further we prove that if 0 and 1 are the only idempotents...
A ring $R$ is a strongly clean ring if every element in $R$ is the sum of an idempotent and a unit that commutate. We construct some classes of strongly clean rings which have stable range one. It is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.
let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...
let r be an associative ring with unity. an element a in r is said to be r-clean if a = e+r, where e is an idempotent and r is a regular (von neumann) element in r. if every element of r is r-clean, then r is called an r-clean ring. in this paper, we prove that the concepts of clean ring and r-clean ring are equivalent for abelian rings. further we prove that if 0 and 1 are the only idempotents...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید