نتایج جستجو برای: nonnegative signed total roman domination

تعداد نتایج: 840992  

2016
M. Atapour S. Norouzian S. M. Sheikholeslami L. Volkmann Mariusz Meszka

Abstract. Let G = (V,E) be a simple graph. A function f : V → {−1, 1} is called an inverse signed total dominating function if the sum of its function values over any open neighborhood is at most zero. The inverse signed total domination number of G, denoted by γ0 st(G), equals to the maximum weight of an inverse signed total dominating function of G. In this paper, we establish upper bounds on...

A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...

2012
Abdollah Khodkar

A Roman dominating function of a graph G is a labeling f : V (G) −→ {0, 1, 2} such that every vertex with label 0 has a neighbor with label 2. The Roman domination number γR(G) of G is the minimum of ∑ v∈V (G) f(v) over such functions. The Roman domination subdivision number sdγR(G) is the minimum number of edges that must be subdivided (each edge in G can be subdivided at most once) in order t...

2013
A. Martínez-Pérez D. Oliveros

A Roman domination function on a graph G is a function r : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman function is the value r(V (G)) = ∑ u∈V (G) r(u). The Roman domination number γR(G) of G is the minimum weight of a Roman domination function on G . "Roman Criticality" has been ...

Journal: :communication in combinatorics and optimization 0
h. abdollahzadeh ahangar babol noshirvani university of technology s.r. mirmehdipour babol noshirvani university of technology

a {em roman dominating function} on a graph $g$ is a function$f:v(g)rightarrow {0,1,2}$ satisfying the condition that everyvertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex$v$ for which $f(v) =2$. {color{blue}a {em restrained roman dominating}function} $f$ is a {color{blue} roman dominating function if the vertices with label 0 inducea subgraph with no isolated vertex.} the wei...

Journal: :Ars Comb. 2013
Haoli Wang Xirong Xu Yuansheng Yang Chunnian Ji

A Roman domination function on a graph G = (V,E) is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u with f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight of a Roman domination function f is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G, denoted by...

2014
Nader Jafari Rad Marcin Krzywkowski

A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. For a given graph,...

Journal: :Discussiones Mathematicae Graph Theory 2019

2005
Mathieu Liedloff Ton Kloks Jiping Liu Sheng-Lung Peng

A Roman dominating function of a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex x with f(x) = 0 is adjacent to at least one vertex y with f(y) = 2. The weight of a Roman dominating function is defined to be f(V ) = P x∈V f(x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we answer an open pro...

Journal: :Australasian J. Combinatorics 2012
M. Adabi E. Ebrahimi Targhi Nader Jafari Rad M. Saied Moradi

A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number of G, γR(G), is the minimum weight of a Roman dominating function on G. In this paper, we...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید