Abstract A graph $\Gamma $ is called $(G, s)$ -arc-transitive if $G \le \text{Aut} (\Gamma )$ transitive on the set of vertices and s -arcs , where for an integer $s \ge 1$ -arc a sequence $s+1$ $(v_0,v_1,\ldots ,v_s)$ such that $v_{i-1}$ $v_i$ are adjacent $1 i s$ $v_{i-1}\ne v_{i+1}$ s-1$ . 2-transitive it $(\text{Aut} ), 2)$ but not 3)$ -arc-transitive. Cayley group G normal in $\text{Aut} n...