نتایج جستجو برای: operator valued semi riemannian metrics

تعداد نتایج: 341386  

2008
Sergiu I. Vacaru

We investigate bi–Hamiltonian structures and related mKdV hierarchy of solitonic equations generated by (semi) Riemannian metrics and curve flow of non–stretching curves. The corresponding nonholonomic tangent space geometry is defined by canonically induced nonlinear connections, Sasaki type metrics and linear connections. One yields couples of generalized sine–Gordon equations when the corres...

2013
Stephen A. Fulling

The Navier–Lamé operator of classical elasticity, μ∆v+(λ+μ)∇(∇·v), is the simplest example of a linear differential operator whose second-order terms involve a coupling among the components of a vector-valued function. Similar operators on Riemannian manifolds arise in conformal geometry and in quantum gravity. (In the latter context they have come to be called “nonminimal”, but “exotic” is pro...

ژورنال: پژوهش های ریاضی 2021

      An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β  which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...

2008
B. Ammann E. Humbert

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. We define the second Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the metrics conformal to g and of volume 1. We study when it is attained. As an application, we find nodal solutions of the Yamabe equation.

2008
B. Ammann E. Humbert

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. We define the second Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the metrics conformal to g and of volume 1. We study when it is attained. As an application, we find nodal solutions of the Yamabe equation.

2008
BERND AMMANN

Let (M, g) be a compact Riemannian manifold of dimension ≥ 3. We show that there is a metrics g̃ conformal to g and of volume 1 such that the first positive eigenvalue the conformal Laplacian with respect to g̃ is arbitrarily large. A similar statement is proven for the first positive eigenvalue of the Dirac operator on a spin manifold of dimension ≥ 2.

Journal: :bulletin of the iranian mathematical society 2011
t. aghasizadeh s. hejazian

2008
B. HELFFER

We consider a periodic magnetic Schrödinger operator on a noncompact Riemannian manifold M such that H(M, R) = 0 endowed with a properly discontinuous cocompact isometric action of a discrete group. We assume that there is no electric field and that the magnetic field has a periodic set of compact magnetic wells. We review a general scheme of a proof of existence of an arbitrary large number of...

Journal: :Proceedings of the American Mathematical Society 1995

2008
Ruggero Maria Santilli

We recall that the Minkowskian geometry possesses basic units of space and time which are invariant under the Poincaré symmetry. We then show that, by comparison, the Riemannian geometry possesses space-time units which are not invariant under the symmetries of the Riemannian line element, thus causing evident physical ambiguities. We therefore introduce a novel formulation of general relativit...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید