نتایج جستجو برای: pabon lasso analysis

تعداد نتایج: 2827094  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان فارس - دانشکده علوم پایه 1389

کارهای زیادی در انتخاب گروه های مهم متغیرها با استفاده از شیوه های تاوانی وجود دارد، در بررسی که انجام شد، ما نتایج را ازlasso به lasso گروهی با ابعاد بالا تعمیم می دهیم. ما انتخاب برآورد ویژگی های lasso گروهی و شیوه های lasso گروهی تطبیق پذیر را مطالعه می کنیم. نشان می دهیم که، تحت شرایط مناسب، lasso گروهی مدلی از نظم و ترتیب صحیح ابعاد را انتخاب می کند و تمایل مدل انتخابی به سطحی که با کمک ضر...

Journal: :The Australasian medical journal 2013
Kamal Gholipour Bahram Delgoshai Iravan Masudi-Asl Kamran Hajinabi Shabnam Iezadi

BACKGROUND Considering governmental scrutiny and financial constraints in medicine, the need for improved performance, which can provide acceptable care for medical consumers, leads to the conduct of new managerial methods to improve effectiveness. AIMS This study aimed to compare performance indicators of obstetrics and gynaecology teaching hospitals in Tabriz. METHOD A longitudinal, retro...

2013
Fabian L. Wauthier Nebojsa Jojic Michael I. Jordan

The Lasso is a cornerstone of modern multivariate data analysis, yet its performance suffers in the common situation in which covariates are correlated. This limitation has led to a growing number of Preconditioned Lasso algorithms that pre-multiply X and y by matrices PX , Py prior to running the standard Lasso. A direct comparison of these and similar Lasso-style algorithms to the original La...

Journal: :Journal of Machine Learning Research 2016
Stéphane Ivanoff Franck Picard Vincent Rivoirard

High dimensional Poisson regression has become a standard framework for the analysis of massive counts datasets. In this work we estimate the intensity function of the Poisson regression model by using a dictionary approach, which generalizes the classical basis approach, combined with a Lasso or a group-Lasso procedure. Selection depends on penalty weights that need to be calibrated. Standard ...

2009
Sanghee Cho Antony Joseph Kyoung Hee Kim

5 The LASSO 9 5.1 Performance of Lasso estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.2 “Normal equations” for the LASSO solutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 5.3 Facts about Lasso solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 This short document presents the Dantzig Selector, first introd...

2011
Alexandre Belloni Victor Chernozhukov ALEXANDRE BELLONI

In this paper we study post-model selection estimators which apply ordinary least squares (ols) to the model selected by first-step penalized estimators, typically lasso. It is well known that lasso can estimate the nonparametric regression function at nearly the oracle rate, and is thus hard to improve upon. We show that ols post lasso estimator performs at least as well as lasso in terms of t...

2017
Nils Ternès Federico Rotolo Georg Heinze Stefan Michiels

Stratified medicine seeks to identify biomarkers or parsimonious gene signatures distinguishing patients that will benefit most from a targeted treatment. We evaluated 12 approaches in high-dimensional Cox models in randomized clinical trials: penalization of the biomarker main effects and biomarker-by-treatment interactions (full-lasso, three kinds of adaptive lasso, ridge+lasso and group-lass...

2016
Deguang Kong Ryohei Fujimaki Ji Liu Feiping Nie Chris Ding

Group LASSO is widely used to enforce the structural sparsity, which achieves the sparsity at the inter-group level. In this paper, we propose a new formulation called “exclusive group LASSO”, which brings out sparsity at intra-group level in the context of feature selection. The proposed exclusive group LASSO is applicable on any feature structures, regardless of their overlapping or non-overl...

2016
Igor Melnyk Arindam Banerjee

While considerable advances have been made in estimating high-dimensional structured models from independent data using Lasso-type models, limited progress has been made for settings when the samples are dependent. We consider estimating structured VAR (vector auto-regressive model), where the structure can be captured by any suitable norm, e.g., Lasso, group Lasso, order weighted Lasso, etc. I...

2013
Alexandre Belloni Victor Chernozhukov Lie Wang

We propose a self-tuning √ Lasso method that simultaneously resolves three important practical problems in high-dimensional regression analysis, namely it handles the unknown scale, heteroscedasticity and (drastic) non-Gaussianity of the noise. In addition, our analysis allows for badly behaved designs, for example, perfectly collinear regressors, and generates sharp bounds even in extreme case...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید