نتایج جستجو برای: pem fuel cell

تعداد نتایج: 1740315  

2014
Zhen Liu Yadong Wang Xinping Ai Wenmao Tu Mu Pan

A photoassisted oxygen reduction reaction (ORR) through I(-)/I3(-) redox couple was investigated for proton exchange membrane (PEM) fuel cell cathode reaction. The I(-)/I3(-)-based liquid cathode was used to replace conventional oxygen cathode, and its discharge product I(-) was regenerated to I3(-) by photocatalytic oxidation with the participation of oxygen. This new and innovative approach m...

2017
D. S. Falcão C. Pinho A.M.F.R. Pinto

The water management is a critical problem to overcome in the PEM fuel cell technology. Models play an important role in fuel cell development since they enable the understanding of the influence of different parameters on the cell performance allowing a systematic simulation, design and optimization of fuel cells systems. In this work, a model previously developed and validated, is used to pre...

In this study cross section geometry and material of gasket in proton exchange membrane (PEM) fuel cells have been investigated to achieve optimized fuel cell in terms of energy efficiency. The role of gaskets in fuel cells is sealing of gas flow channels and preventing from combination of them. In a PEM stack, gasket with approved geometry that suffers more stress has better sealing. For this ...

2007
Prodip K. Das Xianguo Li Zhong-Sheng Liu

The performance of polymer electrolyte membrane (PEM) fuel cell is mainly influenced by ohmic, activation, and concentration overpotentials. Ohmic overpotential is directly proportional to electric resistance in the fuel cell components that can be estimated from the experimental data or from the empirical relation for the cell polarization curve. However, such simple relation is not available ...

2009
A. Kirubakaran Shailendra Jain

The fuel cells are considered as one of the most promising devices for standalone/grid connected distributed generations (DGs) due to its cleanliness, modularity and higher potential capability. The barriers in the widespread use of fuel cells are their slow response for sudden load changes and higher installation cost. In this paper a simulation study of dynamic behavior of Nexa 1.2kW PEM fuel...

2012
Naxakis Ioannis Ioannis Milias-Argitis

The aim of this paper is the evaluation of the performance of a low pressure PEM (proton exchange membrane) fuel cell stack to step load changes, which are characteristic of standalone fuel cell system applications. The goal is a better understanding of the electrical behavior of the FC (fuel cell), as a result of the electrochemical processes, via the cell’s voltage characteristic during trans...

An electrochemical analysis on a single channel PEM fuel cell was carried out by Computational Fuel Cell Dynamics (CFCD). The objective was to assess the latest developments regarding the effects of change in the current collector materials, porosity of electrodes and gas diffusion layer on the fuel cell power density. Graphite, as the most applicable current collector material, was applied fol...

2012
Tayyar Dzhafarov Sureyya Aydin Yuksel

Hydrogen is an important chemical material that is utilized in a large scale in synthetic chemical industries in modern society. On the other hand, technologies for utilizing hydrogen as clean source of energy are considered to assume an important position in order to overcome problems of lack of energy and environment in future. Hence, fuel cells that store hydrogen and operate using it as fue...

2014
M. Schultze C. Hähnel J. Horn

Polymer electrolyte membrane (PEM) fuel cells are highly efficient energy converters and provide electrical energy, cathode exhaust gas with low oxygen concentration and water. They are investigated as replacement for auxiliary power units (APU) that are currently used for electrical power generation on aircraft. For generation of oxygen depleted cathode exhaust air (ODA) oxygen concentration m...

2005
Jay Benziger E. Chia J. F. Moxley I. G. Kevrekidis

The dynamic response of the stirred tank reactor (STR) polymer electrolyte membrane (PEM) fuel cell has been explored over the temperature range of 35–105 ◦C. When the fuel cell was operated in the autohumidification mode the fuel cell current “ignited’’ when the membrane water content was greater than a critical level of ∼1.6 H2O/SO3, and it extinguished when the initial membrane water content...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید