نتایج جستجو برای: penalized spline
تعداد نتایج: 18234 فیلتر نتایج به سال:
We construct bootstrap confidence intervals for smoothing spline and smoothing spline ANOVA estimates based on Gaussian data, and penalized likelihood smoothing spline estimates based on data from exponential families. Several variations of bootstrap confidence intervals are considered and compared. We find that the commonly used bootstrap percentile intervals are inferior to the T intervals an...
In model selection, the most effective method requires much time.The analysis of the bivariate B-spline model with a penalized term has many difficulties.It has many factors and parameters such the number of the knots, the locations of those knots, number of B-spline functions and the value of the smoothing parameter of the penalized term.For the determination of the model we have to compare a ...
Abstract: This paper performs an asymptotic analysis of penalized spline estimators. We compare P -splines and splines with a penalty of the type used with smoothing splines. The asymptotic rates of the supremum norm of the difference between these two estimators over compact subsets of the interior and over the entire interval are established. It is shown that a Pspline and a smoothing spline ...
Typically, an optimal smoothing parameter in a penalized spline regression is determined by minimizing an information criterion, such as one of the Cp, CV and GCV criteria. Since an explicit solution to the minimization problem for an information criterion cannot be obtained, it is necessary to carry out an iterative procedure to search for the optimal smoothing parameter, i.e., a grid search m...
Partially linear models with local kernel regression are popular non-parametric techniques. However, bandwidth selection in the models is a puzzling topic that has been addressed in literature with the use of undersmoothing and regular smoothing. In an attempt to address the strategy of bandwidth selection, we review profile-kernel based and backfitting methods for partially linear models, and ...
Wepropose the generalized profilingmethod to estimate themultiple regression functions in the framework of penalized spline smoothing, where the regression functions and the smoothing parameter are estimated in two nested levels of optimization. The corresponding gradients and Hessian matrices are worked out analytically, using the Implicit Function Theorem if necessary, which leads to fast and...
Research in the field of nonparametric shape constrained regression has been intensive. However, only few publications explicitly deal with unimodality although there is need for such methods in applications, for example, in dose-response analysis. In this article, we propose unimodal spline regression methods that make use of Bernstein-Schoenberg splines and their shape preservation property. ...
The Hybrid Spline method (H-spline) is a method of density estimation which involves regression splines and smoothing splines methods. Using basis functions (B-splines), this method is much faster than Smoothing Spline Density Estimation approach (Gu, 1993). Simulations suggest that with more structured data (e.g., several modes) H-spline method estimates the modes as well as Logspline (Kooperb...
We propose an iterative estimation procedure for performing functional principal component analysis. The procedure aims at functional or longitudinal data where the repeated measurements from the same subject are correlated. An increasingly popular smoothing approach, penalized spline regression, is used to represent the mean function. This allows straightforward incorporation of covariates and...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید