نتایج جستجو برای: quasi newton algorithm
تعداد نتایج: 844645 فیلتر نتایج به سال:
In this paper we propose an iterative learning control scheme based on the quasi-Newton method. The iterative learning control is designed to improve the performance of the systems working cyclically. We consider the general type of systems described by continuously diierentiable operator acting in Banach spaces. The suucient conditions for the convergence of quasi-Newton iterative learning alg...
Fast convergent and computationally inexpensive policy evaluation is an essential part of reinforcement learning algorithms based on policy iteration. Algorithms such as LSTD, LSPE, FPKF and NTD, have faster convergence rates but they are computationally slow. On the other hand, there are algorithms that are computationally fast but with slower convergence rate, among them are TD, RG, GTD2 and ...
The Radiotherapy treatment planning optimization process based on a quasi-Newton algorithm with an object function containing dose-volume constraints is not guaranteed to converge when the dose value in the dose-volume constraint is a critical value of the dose distribution. This is caused by finite differentiability of the dose-volume histogram at such values. A closer look near such values re...
Many researches attempt to improve the efficiency of the usual quasi-Newton (QN) methods by accelerating the performance of the algorithm without causing more storage demand. They aim to employ more available information from the function values and gradient to approximate the curvature of the objective function. In this paper we derive a new QN method of this type using a fourth order tensor m...
We present a simple extension of standard Bussgang blind equalization algo rithms that signi cantly improves their convergence properties Our technique uses the inverse channel estimate to lter the regressor signal The modi ed algorithms provide quasi Newton convergence in the vicinity of a local minimum of the chosen cost function with only a modest increase in the overall computational comple...
Quasi-Newton methods have played a prominent role, over many years, in the design of effective practical methods for the numerical solution of nonlinear minimization problems and in multi-dimensional zero-finding. There is a wide literature outlining the properties of these methods and illustrating their performance [e.g., [8]]. In addition, most modern optimization libraries house a quasi-Newt...
In this paper we propose a derivative-free optimization algorithm based on conditional moments for finding the maximizer of an objective function. The proposed algorithm does not require calculation or approximation of any order derivative of the objective function. The step size in iteration is determined adaptively according to the local geometrical feature of the objective function and a pre...
A new family of limited-memory variationally-derived variable metric or quasi-Newton methods for unconstrained minimization is given. The methods have quadratic termination property and use updates, invariant under linear transformations. Some encouraging numerical experience is reported.
A nonmonotone strategy for solving nonlinear systems of equations is introduced. The idea consists of combining eecient local methods with an algorithm that reduces monotonically the squared norm of the system in a proper way. The local methods used are Newton's method and two quasi-Newton algorithms. Global iterations are based on recently introduced box-constrained minimization algorithms. We...
We study a parallel Newton-Krylov-Schwarz (NKS) based algorithm for solving large sparse systems resulting from a fully implicit discretization of partial differential equations arising from petroleum reservoir simulations. Our NKS algorithm is designed by combining an inexact Newton method with a rank-2 updated quasi-Newton method. In order to improve the computational efficiency, both DDM and...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید