نتایج جستجو برای: r multiplication module
تعداد نتایج: 532066 فیلتر نتایج به سال:
Consider the ring R := Q[τ, τ−1] of Laurent polynomials in the variable τ . The Artin’s Pure Braid Groups (or Generalized Pure Braid Groups) act over R, where the action of every standard generator is the multiplication by τ . In this paper we consider the cohomology of such groups with corefficients in the module R (it is well known that such cohomology is strictly related to the untwisted int...
The free abelian group R(Q) on the set of indecomposable representations of a quiver Q, over a field K, has a ring structure where the multiplication is given by the tensor product. We show that if Q is a rooted tree (an oriented tree with a unique sink), then the ring R(Q)red is a finitely generated Z-module (here R(Q)red is the ring R(Q) modulo the ideal of all nilpotent elements). We will de...
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
All rings are commutative with identity and all modules are unital. Let R be a ring, M an R-module and R(M), the idealization of M . Homogenous ideals of R(M) have the form I (+)N , where I is an ideal of R and N a submodule of M such that IM ⊆ N . A ring R (M) is called a homogeneous ring if every ideal of R (M) is homogeneous. In this paper we continue our recent work on the idealization of m...
Let R be a commutative ring with identity and Mbe a unitary R-module. In this paper we generalize the conceptmultiplicatively closed subset of R and we study some propertiesof these genaralized subsets of M. Among the many results in thispaper, we generalize some well-known theorems about multiplicativelyclosed subsets of R to these generalized subsets of M. Alsowe show that some other well-kno...
we call a ring $r$ right generalized semiperfect if every simple right $r$-module is an epimorphic image of a flat right $r$-module with small kernel, that is, every simple right $r$-module has a flat $b$-cover. we give some properties of such rings along with examples. we introduce flat strong covers as flat covers which are also flat $b$-covers and give characterizations of $a$-perfe...
Let R be a ring, M a right R-module and (S,≤) a strictly ordered monoid. In this paper we will show that if (S,≤) is a strictly ordered monoid satisfying the condition that 0 ≤ s for all s ∈ S, then the module [[MS,≤]] of generalized power series is a uniserial right [[RS,≤]] ]]-module if and only if M is a simple right R-module and S is a chain monoid.
All rings are commutative with identity and all modules are unitary. In this note we give some properties of a finite collection of submodules such that the sum of any two distinct members is multiplication, generalizing those which characterize arithmetical rings. Using these properties we are able to give a concise proof of Patrick Smith’s theorem stating conditions ensuring that the sum and ...
We call a module essentially retractable if HomR for all essential submodules N of M. For a right FBN ring R, it is shown that: (i) A non-zero module is retractable (in the sense that HomR for all non-zero ) if and only if certain factor modules of M are essentially retractable nonsingular modules over R modulo their annihilators. (ii) A non-zero module is essentially retractable if and on...
we call a module essentially retractable if homr for all essential submodules n of m. for a right fbn ring r, it is shown that: (i) a non-zero module is retractable (in the sense that homr for all non-zero ) if and only if certain factor modules of m are essentially retractable nonsingular modules over r modulo their annihilators. (ii) a non-zero module is essentially retractable if and on...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید