For a bounded linear operator $A$ on reproducing kernel Hilbert space $\mathcal{H}(\Omega)$, with normalized $\widehat{k}_{\lambda} = \frac{k_{\lambda}}{\lVert k_{\lambda}\lVert}$, the Berezin symbol, number and norm are defined respectively by $\widetilde{A}(\lambda) \langle A\widehat{k}_{\lambda},\widehat{k}_{\lambda}\rangle$, $ber(A) \sup_{\lambda\in\Omega}\left|\widetilde{A}(\lambda)\right|...