نتایج جستجو برای: roman historique
تعداد نتایج: 15826 فیلتر نتایج به سال:
Le carcinome basocellulaire infiltrant est un carcinome mutilant de mauvais pronostic qui représente 40% des carcinomes de la pointe et l'aile du nez. Il s'agit de carcinome ulcéreux creusant de grands cratères nécrotiques qui finissent par envahir et effondrer les cavités nasosinusiennes et orbitaires ou perforer les os du crâne jusqu'aux méninges, ou détruire les vaisseaux du cou. Histologiqu...
The Roman imperial monarchy is generally studied from the vantage point of ancient Roman history: the “Roman emperor” is viewed and analyzed as an element of the Roman world. This conventional approach fails to place this institution in a broader comparative context, that of monarchical rulers across world history. Systematic comparison opens up new perspectives and is indispensable in identify...
A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of f is w(f) = ∑ v∈V f(v). The Roman domination number is the minimum weight of an RDF in G. It is known that for every graph G, the Roman domination number of G is bounded above...
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. For a given graph,...
A Roman dominating function (RDF) on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex v for which f(v) = 0, is adjacent to at least one vertex u for which f(u) = 2. The weight of a Roman dominating function f is the value f(V (G)) = ∑ v∈V (G) f(v). The Roman domination number of G, denoted by γR(G), is the minimum weight of an RDF on G. The Roman reinforc...
A Roman dominating function on a graph G is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number of G, γR(G), is the minimum weight of a Roman dominating function on G. In this paper, we...
la littérature libertine française du xviiie siècle a longtemps été considérée secondaire ou inférieure dans le panorama de la littérature française à cause de sa valence subversive en opposition au roman d’inspiration bourgeoise. si ce dernier représentait l’expression triomphante de la bourgeoisie, le roman libertin n’était que son ombre : le roman bourgeois symbolisait la victoire de la stab...
A Roman dominating function on a graphG is a function f : V (G) → {0, 1, 2} satisfying the condition that every vertex u ∈ V (G) for which f(u) = 0 is adjacent to at least one vertex v ∈ V (G) for which f(v) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The Roman domination number γR(G) of G is the minimum weight of a Roman dominating function on G. A Ro...
A Roman dominating function of a graph G = (V, E) is a function f : V → {0, 1, 2} such that every vertex x with f (x) = 0 is adjacent to at least one vertex y with f (y) = 2. The weight of a Roman dominating function is defined to be f (V ) = ∑ x∈V f (x), and the minimum weight of a Roman dominating function on a graph G is called the Roman domination number of G. In this paper we first answer ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید