نتایج جستجو برای: runge kutta and partitioned runge kutta methods
تعداد نتایج: 16907324 فیلتر نتایج به سال:
This paper is concerned with time-stepping numerical methods for computing sti semi-discrete systems of ordinary di erential equations for transient hypersonic ows with thermo-chemical nonequilibrium. The sti ness of the equations is mainly caused by the viscous ux terms across the boundary layers and by the source terms modeling nite-rate thermo-chemical processes. Implicit methods are needed ...
The purpose of this paper is to study the numerical oscillations of Runge-Kutta methods for the solution of alternately advanced and retarded differential equations with piecewise constant arguments. The conditions of oscillations for the Runge-Kutta methods are obtained. It is proven that the Runge-Kutta methods preserve the oscillations of the analytic solution. In addition, the relationship ...
In this paper we analyze the consistency and stability properties of Runge-Kutta discrete adjoints. Discrete adjoints are very popular in optimization and control since they can be constructed automatically by reverse mode automatic differentiation. The consistency analysis uses the concept of elementary differentials and reveals that the discrete Runge-Kutta adjoint method has the same order o...
Literature For a great deal of information on Runge-Kutta methods consult J.C. Butcher, Numerical Methods for Ordinary Differential Equations, second edition, Wiley and Sons, 2008, ISBN 9780470723357. That book also has a good introduction to linear multistep methods. In these notes we refer to this books simply as Butcher. The notes were written independently of the book which accounts for som...
In this article, a new Runge-Kutta-Nyström method is derived. The new RKN method has zero phase-lag, zero amplification error and zero first derivative of phase-lag. This method is basically based on the sixth algebraic order Runge-Kutta-Nyström method, which has proposed by Dormand, El-Mikkawy and Prince. Numerical illustrations show that the new proposed method is much efficient as compared w...
Practical, structure-preserving methods for integrating classical Heisenberg spin systems are discussed. Two new integrators are derived and compared, including (1) a symmetric energy and spin-length preserving integrator based on a Red-Black splitting of the spin sites combined with a staggered timestepping scheme and (2) a (Lie-Poisson) symplectic integrator based on Hamiltonian splitting. Th...
We present a new class of adaptivity algorithms for time-dependent partial differential equations (PDE) that combines adaptive higher-order finite elements (hp-FEM) in space with arbitrary (embedded, higher-order, implicit) Runge-Kutta methods in time. Weak formulation is only created for the stationary residual of the equation, and the Runge-Kutta method is supplied via its Butcher’s table. Ar...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید