نتایج جستجو برای: runx2 gene
تعداد نتایج: 1142462 فیلتر نتایج به سال:
Abstract Endochondral bone formation is fundamental for skeletal development. During this process, chondrocytes undergo multiple steps of differentiation and coordinated transition from a proliferating to hypertrophic stage, which critical advance Here, we identified the transcription factor Dmrt2 (double-sex mab-3 related 2) as Sox9-inducible gene that promotes chondrocyte hypertrophy in pre-h...
Runx2 is essential for osteoblast differentiation and gene expression of bone matrix proteins, however, little is known about the mechanism regulating its activity. In this study, the role of Runx2 on gene expression of transcription factors, AJ18, Msx2, and Dlx5, was examined in vitro. It is known that AJ18 and Msx2 act as repressors to inhibit activity of Runx2, whereas Dlx5 promotes its acti...
Epigenetic mechanisms mediate the acquisition of specialized cellular phenotypes during tissue development, maintenance and repair. When phenotype-committed cells transit through mitosis, chromosomal condensation counteracts epigenetic activation of gene expression. Subsequent post-mitotic re-activation of transcription depends on epigenetic DNA and histone modifications, as well as other archi...
Cleidocranial dysplasia (CCD) is an autosomal dominant human skeletal disorder comprising hypoplastic clavicles, wide cranial sutures, supernumerary teeth, short stature, and other skeletal abnormalities. It is known that mutations in the human RUNX2 gene mapped at 6p21 are responsible for CCD. We analyzed the mutation patterns of the RUNX2 gene by direct sequencing in six Taiwanese index cases...
Serum deprivation (SD) is well known to induce G0/G1 cell cycle arrest and apoptosis in various cells. In the present study, we firstly found that SD could induce G1 arrest and the differentiation of human osteoblastic MG-63 cells, as evidenced by the increase of osteoblastic differentiation markers, such as bone morphogenetic protein-2 (BMP-2), osteocalcin and runt-related transcription factor...
Non-viral based gene therapies represent one possible tissue engineering-based approach to improve bone regeneration. Unique target proteins for gene therapy are transcription factors. These are nuclear based proteins that can not feasibly be applied as mature proteins. Therefore, protein based therapies can not be utilized. Gene therapy is the only option. However, it remains unclear which tra...
The goal of tissue-engineered heart valves (TEHV) is to replace normal and overcome the shortcomings valve replacement commonly used in clinical practice. However, calcification TEHV major bottleneck break for both workers researchers. Endothelialization plays a crucial role delaying by reducing platelet adhesion covering calcified spots. In present study, we loaded RunX2-siRNA VEGF into mesopo...
Cleidocranial dysplasia (CCD) is an autosomal dominant skeletal dysplasia associated with cranial, clavicular, and dental anomalies. It is caused by mutations in the RUNX2 gene, which encodes an osteoblast-specific transcription factor and maps to chromosome 6p21. We report clinical and molecular cytogenetic studies in a patient with clinical features of CCD including wormian bones, delayed fon...
Mesenchymal stem cell-derived osteochondroprogenitors express two master transcription factors, SOX9 and RUNX2, during condensation of the skeletal anlagen. They are essential for chondrogenesis and osteogenesis, respectively, and their haploinsufficiency causes human skeletal dysplasias. We show that SOX9 directly interacts with RUNX2 and represses its activity via their evolutionarily conserv...
RUNX2 is a member of the PEBP2/CBF transcription factors family controlling the expression of genes whose products are essential for bone formation. Mutations in the RUNX2 gene may be associated with cleidocranial dysplasia (CCD), a rare skeletal disease characterized by stature aberrations, delayed closure of the cranial sutures, hypoplastic or aplastic clavicles, and multiple dental abnormali...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید