نتایج جستجو برای: scnt
تعداد نتایج: 452 فیلتر نتایج به سال:
The rabbit is a common animal model that has been employed in studies on various human disorders, and the generation of genetically modified rabbit lines is highly desirable. Female rabbits have been successfully cloned from cumulus cells, and the somatic cell nuclear transfer (SCNT) technology is well established. The present study generated hypoxanthine phosphoribosyltransferase (HPRT) gene k...
Although somatic cell nuclear transfer (SCNT) and induction of pluripotency (to form iPSCs) are both recognized reprogramming methods, there has been relatively little comparative analysis of the resulting pluripotent cells. Here, we examine the capacity of these two reprogramming approaches to rejuvenate telomeres using late-generation telomerase-deficient (Terc(-/-)) mice that exhibit telomer...
The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and b...
Incomplete epigenetic reprogramming of the genome of donor cells causes poor early and full-term developmental efficiency of somatic cell nuclear transfer (SCNT) embryos. Previous research indicate that inhibition of the histone H3 K79 methyltransferase DOT1L, using a selective pharmacological inhibitor EPZ004777 (EPZ), significantly improved reprogramming efficiency during the generation of mo...
BACKGROUND/AIMS Hypoacetylation caused by aberrant epigenetic nuclear reprogramming results in low efficiency of mammalian somatic cell nuclear transfer (SCNT). Many epigenetic remodeling drugs have been used in attempts to improve in vitro development of porcine SCNT embryos. In this study, we examined the effects of LAQ824, a structurally novel histone acetylase inhibitor, on the nuclear repr...
Ectopic expression of reprogramming factors has been widely adopted to reprogram somatic nucleus into a pluripotent state (induced pluripotent stem cells [iPSCs]). However, genetic aberrations such as somatic gene mutation in the resulting iPSCs have raised concerns regarding their clinical utility. To test whether the increased somatic mutations are primarily the by-products of current reprogr...
Somatic cell nuclear transfer (SCNT) has been a well-known technique for decades and widely applied to generate identical animals, including ones with genetic alterations. The system has been demonstrated successfully in zebrafish. The elaborated requirements of SCNT, however, limit reproducibility of the established model to a few groups in zebrafish research community. In this chapter, we met...
It has now been 15 years since the first cloned sheep was born using somatic cell nuclear transfer (SCNT). This technique provides a unique tool for preservation of valuable individuals, livestock propagation, genetically modified animals, production research of biomedicine and conservation of endangered species. In this review, research of the SCNT in livestock and endangered species, includin...
Polyploidy is occurred by the process of endomitosis or cell fusion and usually represent terminally differentiated stage. Their effects on the developmental process were mainly investigated in the amphibian and fishes, and only observed in some rodents as mammalian model. Recently, we have established tetraploidy somatic cell nuclear transfer-derived human embryonic stem cells (SCNT-hESCs) and...
The number of species for which somatic cell nuclear transfer (SCNT) protocols are established is still increasing. Due to the high number of cloned farm, companion, and sport animals, the topic of animal cloning never ceases to be of public interest. Numerous studies cover the health status of SCNT-derived animals, but very few cover the effects of SCNT on aging. However, only cloned animals t...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید