نتایج جستجو برای: simplicial affine semigroup
تعداد نتایج: 33687 فیلتر نتایج به سال:
For every Banach space (Y, ‖ · ‖Y ) that admits an equivalent uniformly convex norm we prove that there exists c = c(Y ) ∈ (0,∞) with the following property. Suppose that n ∈ N and that X is an n-dimensional normed space with unit ball BX . Then for every 1-Lipschitz function f : BX → Y and for every ε ∈ (0, 1/2] there exists a radius r > exp(−1/ε), a point x ∈ BX with x + rBX ⊆ BX , and an aff...
Given a morphism from an affine semigroup Q to an arbitrary commutative monoid, it is shown that every fiber possesses an affine stratification: a partition into a finite disjoint union of translates of normal affine semigroups. The proof rests on mesoprimary decomposition of monoid congruences and a novel list of equivalent conditions characterizing the existence of an affine stratification. T...
We study the Cox realization of an affine variety, i.e., a canonical representation of a normal affine variety with finitely generated divisor class group as a quotient of a factorially graded affine variety by an action of the Neron-Severi quasitorus. The realization is described explicitly for the quotient space of a linear action of a finite group. A universal property of this realization is...
We consider wreath product decompositions for semigroups of triangular matrices. We exhibit an explicit wreath product decomposition for the semigroup of all n× n upper triangular matrices over a given field k, in terms of aperiodic semigroups and affine groups over k. In the case that k is finite this decomposition is optimal, in the sense that the number of group terms is equal to the group c...
We prove the following version of W lodarczyk’s Embedding Theorem: Every normal complex algebraic C∗-variety Y admits an equivariant closed embedding into a toric prevariety X on which C∗ acts as a one-parameter-subgroup of the big torus T ⊂ X. If Y is Q-factorial, then X may be chosen to be simplicial and of affine intersection.
Using arithmetic conditions on affine semigroups we prove that for a simplicial toric variety of codimension 2 the property of being a set-theoretic complete intersection on binomials in characteristic p holds either for all primes p, or for no prime p, or for exactly one prime p.
The theory of combinatorial differential forms is usually presented in simplicial terms. We present here a cubical version; it depends on the possibility of forming affine combinations of mutual neighbour points in a manifold, in the context of synthetic differential geometry.
Let Q be an affine semigroup generating Z, and fix a finitely generated Z -graded module M over the semigroup algebra k[Q] for a field k. We provide an algorithm to compute a minimal Z-graded injective resolution of M up to any desired cohomological degree. As an application, we derive an algorithm computing the local cohomology modulesH I(M) supported on any monomial (that is, Z -graded) ideal...
We generalize work of Lascoux and Józefiak-Pragacz-Weyman on Betti numbers for minimal free resolutions of ideals generated by 2× 2 minors of generic matrices and generic symmetric matrices, respectively. Quotients of polynomial rings by these ideals are the classical Segre and quadratic Veronese subalgebras, and we compute the analogous Betti numbers for some natural modules over these Segre a...
S̄ = {x ∈ gp(S) | mx ∈ S for some m > 0}. One calls S normal if S = S̄. For simplicity we will often assume that gp(S) = Z; this is harmless because we can replace Z by gp(S) if necessary. The rank of S is the rank of gp(S). We will only be interested in the case in which S ∩ (−S) = 0; such affine semigroups will be called positive. The positivity of S is equivalent to the pointedness of the cone...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید