نتایج جستجو برای: single objective ant colony optimization
تعداد نتایج: 1696902 فیلتر نتایج به سال:
A direct search approach to determine optimal reservoir operating is proposed with ant colony optimization for continuous domains (ACOR). The model is applied to a system of single reservoir to determine the optimum releases during 42 years of monthly steps. A disadvantage of ant colony based methods and the ACOR in particular, refers to great amount of computer run time consumption. In this st...
For the shortcoming that the PI controller parameters can’t been dynamic tuning in constant voltage control system of doubly-fed wind turbines, a PI controller parameters dynamic tuning strategy based on the ant colony optimization (ACO) algorithm is presented. This strategy makes the two parameters in PI controller as the ant of the ant colony, the controlled absolute error integral function t...
Multi-objective ant colony optimization (MOACO) algorithms have shown promising results for various multi-objective problems, but they also offer a large number of possible design choices. Often, exploring all possible configurations is practically infeasible. Recently, the automatic configuration of a MOACO framework was explored and was shown to result in new state-of-the-art MOACO algorithms...
Two methods for ranking of solutions of multi objective optimization problems are proposed in this paper. The methods can be used, e.g. by metaheuristics to select good solutions from a set of non dominated solutions. They are suitable for population based metaheuristics to limit the size of the population. It is shown theoretically that the ranking methods possess some interesting properties f...
In this work, the parallelization of some Multi-Objective Ant Colony Optimization (MOACO) algorithms has been performed. The aim is to get a better performance for these classical optimization metaheuristics, not only relating to the running time, usual objective when a parallelization method is applied, but also improving the quality of the yielded solutions.
This paper compares ant colony optimization (ACO) and evolutionary multi-objective optimization (EMO) for the weather avoidance in a free flight environment. The problem involves a number of potentially conflicting objectives such as minimizing deviations, weather avoidance, minimizing distance traveled and hard constraints like aircraft performance. Therefore, we modeled the problem as a multi...
In this work we consider spatial clustering problem with no a priori information. The number of clusters is unknown, and clusters may have arbitrary shapes and density differences. The proposed clustering methodology addresses several challenges of the clustering problem including solution evaluation, neighborhood construction, and data set reduction. In this context, we first introduce two obj...
Ant colony optimization and artificial potential field were used respectively as global path planning and local path planning methods in this paper. Some modifications were made to accommodate ant colony optimization to path planning. Pheromone generated by ant colony optimization was also utilized to prevent artificial potential field from getting local minimum. Simulation results showed that ...
This paper presents a co-evolutionary improved multi-ant colony optimization (CIMACO) algorithm for ship multi and branch pipe route design. The purpose of CIMACO algorithm is to design appropriate pipe routes to connect the starting points and ending points in the layout space under various kinds of constraints. The ant colony optimization (ACO) algorithm is improved according to the character...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید