نتایج جستجو برای: slip line field
تعداد نتایج: 1183221 فیلتر نتایج به سال:
In two-phase flows, the interface intervening between the two fluid phases intersects the solid wall at the contact line. A classical problem in continuum fluid mechanics is the incompatibility between the moving contact line and the no-slip boundary condition, as the latter leads to a nonintegrable stress singularity. Recently, various diffuse-interface models have been proposed to explain the...
The no-slip boundary condition, i.e., zero fluid velocity relative to the solid at the fluid-solid interface, has been very successful in describing many macroscopic flows. A problem of principle arises when the no-slip boundary condition is used to model the hydrodynamics of immiscible-fluid displacement in the vicinity of the moving contact line, where the interface separating two immiscible ...
[1] We study how enforcing self-consistency in the statistical properties of the preshear and postshear stress on a fault can be used to constrain fault constitutive behavior beyond that required to produce a desired spatial and temporal evolution of slip in a single event. We explore features of rupture dynamics that (1) lead to slip heterogeneity in earthquake ruptures and (2) maintain these ...
For gas flows in microfluidic configurations, the Knudsen layer close to the wall can comprise a substantial part of the entire flowfield and has a major effect on quantities such as the mass flow rate through micro devices. The Knudsen layer itself is characterized by a highly nonlinear relationship between the viscous stress and the strain rate of the gas, so even if the Navier-Stokes equatio...
A numerical study for steady MHD flow of liquid metal through a square duct with slip walls has been carried out. An intense external magnetic field is acting normal to two walls of the square duct which are considered as slip walls. The numerical solutions for velocity and induced magnetic field have been obtained by using a 5 point stencil central difference scheme. Solutions for velocity and...
Microscale roughness on an otherwise smooth hydrophobic surface can significantly reduce the resistance to an external liquid flow. We study static drag reduction over a lubricantinfused surface by looking at an array of two-dimensional transverse grooves partially filled with a second immiscible fluid. Numerical simulations at separate length scales are used to probe the static drag reduction ...
Simple shear of a constrained strip is analyzed using both discrete dislocation plasticity and strain gradient crystal plasticity theory. Both single slip and symmetric double slip are considered. The loading is such that for a local continuum description of plastic flow the deformation state is one of homogeneous shear. In the discrete dislocation formulation the dislocations are all of edge c...
In the present investigation, a mathematical model is developed to study the flow of blood in a multiple stenosed artery employing velocity slip condition under the externally applied transverse magnetic field. Blood is modeled as Herschel-Bulkley fluid to represent the non-Newtonian character of blood in small blood vessels. The expressions for wall shear stress, volumetric flow rate, axial ve...
[1] We investigate the behavior of simulated slow slip events using a rate and state friction model that is steady state velocity weakening at low slip speeds but velocity strengthening at high slip speeds. Our simulations are on a one-dimensional (line) fault, but we modify the elastic interactions to mimic the elongate geometry frequently observed in slow slip events. Simulations exhibit a nu...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید