نتایج جستجو برای: spion
تعداد نتایج: 289 فیلتر نتایج به سال:
Abstract The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification me...
Introduction Modified gene activities (transcription alterations) are known to precede phenotypic changes that are associated with normal (developmental) and pathophysiological (disease) processes in all biological systems especially in the brain. Procedures to evaluate gene activity in the brain are not routinely performed because the techniques used rely on biopsy or autopsy samples. As the r...
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
The aim of this study was to develop a novel multifunctional nanoparticle, which encapsulates SPION and Gemcitabine in PLGA±PEG to form multifunctional drug delivery system. For this aim, super paramagnetic iron oxide nanoparticles (SPIONs) were synthesized and encapsulated simultaneously with Gemcitabine (Gem) in PLGA±PEG copolymers via W/O/W double emulsification method. Optimum size and enca...
Lysolipid-containing thermosensitive liposomes (LTSL) have gained attention for triggered release of chemotherapeutics. Superparamagnetic iron oxide nanoparticles (SPION) offers multimodal imaging and hyperthermia therapy opportunities as a promising theranostic agent. Combining LTSL with SPION may further enhance their performance functionality LTSL. However, major challenge in clinical transl...
Methylene blue (MB) is a hazardous chemical that widely found in wastewater, and its removal critical. One of the most common methods to remove MB adsorption. To enhance adsorption process, magnetic adsorbents, particularly those based on superparamagnetic iron oxide nanoparticles (SPION), play vital role. This study focuses comparing recent novel SPION-based adsorbents how acquire critical par...
Conflict of interests: none. ABSTRACT Objective: The aim of the current study was to monitor the migration of superparamagnetic iron oxide nanoparticle (SPION)-labeled C6 cells, which were used to induce glioblastoma tumor growth in an animal model, over time using magnetic resonance imaging (MRI), with the goal of aiding in tumor prognosis and therapy. Methods: Two groups of male Wistar rats w...
Emerging nanotechnologies have enabled the use of magnetic forces to guide the movement of magnetically-labeled cells, drugs, and other therapeutic agents. Endothelial cells labeled with superparamagnetic iron oxide nanoparticles (SPION) have previously been captured on the surface of magnetizable 2205 duplex stainless steel stents in a porcine coronary implantation model. Recently, we have coa...
To avoid donor tissue shortages, ex vivo cultured human corneal endothelial cell (HCEC) transplantation is a promising therapeutic resource. Superparamagnetic iron oxide nanoparticle (SPION) cell labeling assists HCEC transplantation by attaching the posterior corneal stroma in ex vivo animal models. However, possible functional changes of the HCECs following SPION labeling remain to be determi...
Biologic and therapeutic advances in melanoma brain metastasis are hampered by the paucity of reproducible and predictive animal models. In this work, we developed a robust model of brain metastasis that empowers quantitative tracking of cellular dissemination and tumor progression. Human melanoma cells labeled with superparamagnetic iron oxide nanoparticles (SPION) were injected into the left ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید