نتایج جستجو برای: sterptococcus thermophilus
تعداد نتایج: 2790 فیلتر نتایج به سال:
We investigated the carbon dioxide metabolism of Streptococcus thermophilus, evaluating the phenotype of a phosphoenolpyruvate carboxylase-negative mutant obtained by replacement of a functional ppc gene with a deleted and inactive version, Deltappc. The growth of the mutant was compared to that of the parent strain in a chemically defined medium and in milk, supplemented or not with L-aspartic...
An extremely thermophilic bacterium, Thermus thermophilus HB8, is one of the model organisms for systems biology. Its genome consists of a chromosome (1.85 Mb), a megaplasmid (0.26 Mb) designated pTT27, and a plasmid (9.3 kb) designated pTT8, and the complete sequence is available. We show here that T. thermophilus is a polyploid organism, harboring multiple genomic copies in a cell. In the cas...
Thermus thermophilus is a thermophilic model organism distantly related to the mesophilic model organism E. coli. We reconstituted protein translation of Thermus thermophilus in vitro from purified ribosomes, transfer ribonucleic acids (tRNAs) and 33 recombinant proteins. This reconstituted system was fully functional, capable of translating natural messenger RNA (mRNA) into active full-length ...
The production of original Bulgarian yoghurt, as well as, the yoghurt produced elsewhere in the world are a result of milk fermentation by selected strains of Lactobacillus delbruecki subsp. bulgaricus and Strepococcus salivarius subsp. thermophilus. According to Krueder et al [4] the milk acidification by lactic acid bacteria to pH values around 4.8 is due predominantly to thermophilic cocci. ...
A variety of lactic acid bacteria were screened for their ability to produce folate intracellularly and/or extracellularly. Lactococcus lactis, Streptococcus thermophilus, and Leuconostoc spp. all produced folate, while most Lactobacillus spp., with the exception of Lactobacillus plantarum, were not able to produce folate. Folate production was further investigated in L. lactis as a model organ...
Streptococcus thermophilus is used by the dairy industry to manufacture yogurt and several cheeses. Using PacBio and Illumina platforms, we sequenced the genome of S. thermophilus SMQ-301, the host of several virulent phages. The genome is composed of 1,861,792 bp and contains 2,037 genes, 67 tRNAs, and 18 rRNAs.
Last year, atomic structures of the 50S ribosomal subunit from Haloarcula marismortui and of the 30S ribosomal subunit from Thermus thermophilus were published. A year before that, a 7.8 A resolution electron density map of the 70S ribosome from T. thermophilus appeared. This information is revolutionizing our understanding of protein synthesis.
Streptococcus thermophilus, a very important dairy species, is constantly threatened by phage infection. We report the genome sequences of three S. thermophilus bacteriophages isolated from a dairy environment in the Veneto region of Italy. These sequences will be used for the development of new strategies to detect and control phages in dairy environments.
A new plasmid for the overexpression of His-tagged thermozymes in Thermus thermophilus was developed. With this plasmid, soluble and active histidine-tagged DNA polymerase from T. thermophilus was overproduced in larger amounts in the thermophile than in Escherichia coli. The protein purified from the thermophile was active in PCR.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید