نتایج جستجو برای: the bernstein polynomials and series

تعداد نتایج: 21176540  

2008
Tatsuya Tate

We define the notion of Bernstein measures and Bernstein approximations over general convex polytopes. This generalizes well-known Bernstein polynomials which are used to prove the Weierstrass approximation theorem on one dimensional intervals. We discuss some properties of Bernstein measures and approximations, and prove an asymptotic expansion of the Bernstein approximations for smooth functi...

2015
Robert Löw Viktor Levandovskyy

Global and local Bernstein-Sato ideals, Bernstein-Sato polynomials and Bernstein-Sato polynomials of varieties are introduced, their basic properties are proven and their algorithmic determination with the method of Briançon/Maisonobe is presented. Strati cations with respect to the local variants of the introduced polynomials and ideals with the methods of Bahloul/Oaku and Levandovskyy/Martín-...

2001
Robert P. Boyer Linda C. Thiel

We begin by classifying all solutions of two natural recurrences that Bernstein polynomials satisfy. The first scheme gives a natural characterization of Stancu polynomials. In Section 2, we identify the Bernstein polynomials as coefficients in the generating function for the elementary symmetric functions, which gives a new proof of total positivity for Bernstein polynomials, by identifying th...

2005
Volker Hösel Rupert Lasser

We present approximation kernels for orthogonal expansions with respect to Bernstein-Szegö polynomials. The construction is derived from known results for Chebyshev polynomials of the first kind and does not pose any restrictions on the Bernstein-Szegö polynomials.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1390

abstract: in the paper of black and scholes (1973) a closed form solution for the price of a european option is derived . as extension to the black and scholes model with constant volatility, option pricing model with time varying volatility have been suggested within the frame work of generalized autoregressive conditional heteroskedasticity (garch) . these processes can explain a number of em...

Journal: :Journal of Approximation Theory 2015
Tan Duc Do Shayne Waldron

The Bernstein operator Bn for a simplex in Rd is naturally defined via the Bernstein basis obtained from the barycentric coordinates given by its vertices. Here we consider a generalisation of this basis and the Bernstein operator, which is obtained from generalised barycentric coordinates that are given for more general configurations of points in Rd . We call the associated polynomials a Bern...

Journal: :Computer Aided Geometric Design 2008
Laurent Busé Ron Goldman

Three division algorithms are presented for univariate Bernstein polynomials: an algorithm for finding the quotient and remainder of two univariate polynomials, an algorithm for calculating the GCD of an arbitrary collection of univariate polynomials, and an algorithm for computing a μ-basis for the syzygy module of an arbitrary collection of univariate polynomials. Division algorithms for mult...

2007
Shayne Waldron

First we give a compact treatment of the Jacobi polynomials on a simplex in IR which exploits and emphasizes the symmetries that exist. This includes the various ways that they can be defined: via orthogonality conditions, as a hypergeometric series, as eigenfunctions of an elliptic pde, as eigenfunctions of a positive linear operator, and through conditions on the Bernstein–Bézier form. We the...

Journal: :Journal of Approximation Theory 2010
Doron S. Lubinsky

Let be a closed oriented contour on the Riemann sphere. Let E and F be polynomials of degree n + 1, with zeros respectively on the positive and negative sides of . We compute the [n=n] and [n 1=n] Padé denominator at 1 to f (z) = Z 1 z t dt E (t)F (t) : As a consequence, we compute the nth orthogonal polynomial for the weight 1= (EF ). In particular, when is the unit circle, this leads to an ex...

2014
Y. H. Kim

and Applied Analysis 3 where n, k ∈ Z see 1, 9, 10 . For n, k ∈ Z , the p-adic Bernstein polynomials of degree n are defined by Bk,n x k x k 1 − x n−k for x ∈ Zp, see 1, 10, 11 . In this paper, we consider Bernstein polynomials to express the p-adic q-integral on Zp and investigate some interesting identities of Bernstein polynomials associated with the q-Bernoulli numbers and polynomials with ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید