نتایج جستجو برای: training algorithm
تعداد نتایج: 1038169 فیلتر نتایج به سال:
The training algorithm of Wavelet Neural Networks (WNN) is a bottleneck which impacts on the accuracy of the final WNN model. Several methods have been proposed for training the WNNs. From the perspective of our research, most of these algorithms are iterative and need to adjust all the parameters of WNN. This paper proposes a one-step learning method which changes the weights between hidden la...
Multilayer perceptrons (MLPs) are widely used for pattern classification and regression problems. Backpropagation (BP) algorithm is known technique in the training of multilayer perceptrons. However for its optimum training convergence, the learning and momentum parameters need to be tuned on trial and error method. Further, sometimes the backpropagation algorithm fails to achieve global conver...
چکیده معضل چاقی به عنوان عارضه ای جدی برای زندگی بی تحرک و ماشینی، مورد توجه اغلب مراکز بهداشتی و درمانی دنیا قرار گرفته است. چاقی عامل زمینه ساز و در واقع عامل خطری برای بروز بیماری های قلبی - عروقی است که عموماً با کاهش طول عمر مورد انتظار و افزایش بیماری همراه است. هدف پژوهش حاضر تأثیر 12 هفته تمرینات ویبریشن کل بدن، تمرینات هوازی و تمرینات ترکیبی( هوازی و ویبریشن کل بدن) بر ترکیب بدنی زنان ...
Successful application of multi-view cotraining algorithms relies on the ability to factor the available features into views that are compatible and uncorrelated. This can potentially preclude their use on problems such as coreference resolution that lack an obvious feature split. To bootstrap coreference classifiers, we propose and evaluate a single-view weakly supervised algorithm that relies...
In order to study the effect of R2O/Al2O3 (where R=Na or K), SiO2/Al2O3, Na2O/K2O and H2O/R2O molar ratios on the compressive strength (CS) of Metakaolin base geopolymers, more than forty data were gathered from literature. To increase the number of data, some experiments were also designed. The resulted data were utilized to train and test the three layer artificial neural network (ANN). Bayes...
A multilayer perceptron is usually considered a passive learner that only receives given training data. However, if a multilayer perceptron actively gathers training data that resolve its uncertainty about a problem being learnt, sufficiently accurate classification is attained with fewer training data. Recently, such active learning has been receiving an increasing interest. In this paper, we ...
In this paper, we adopt two views, personal and impersonal views, and systematically employ them in both supervised and semi-supervised sentiment classification. Here, personal views consist of those sentences which directly express speaker’s feeling and preference towards a target object while impersonal views focus on statements towards a target object for evaluation. To obtain them, an unsup...
This paper discusses a new approach to training of transliteration model from unlabeled data for transliteration extraction. We start with an inquiry into the formulation of transliteration model by considering different transliteration strategies as a multi-view problem, where each view exploits a natural division of transliteration features, such as phonemebased, grapheme-based or hybrid feat...
This paper addresses the application of Self-adaptive Global Best Harmony Search (SGHS) algorithm for the supervised training of feed-forward neural networks (NNs). A structure suitable to data representation of NNs is adapted to SGHS algorithm. The technique is empirically tested and verified by training NNs on two classification benchmarking problems. Overall training time, sum of squared err...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید