نتایج جستجو برای: tridiagonal matrix
تعداد نتایج: 365390 فیلتر نتایج به سال:
The problem of solving tridiagonal systems on parallel machines has been studied extensively. This paper examines an existing parallel solvers for tridiagonal systems and extends this divide-and-conquer algorithm to solving almost-tridiagonal systems, systems consisting of a tridiagonal matrix with non-zeros elements in the upper right and lower left corners. In addition to a sketch of a solver...
In this paper we describe block algorithms for the reduction of a real symmetric matrix to tridiagonal form and for the reduction of a general real matrix to either bidiagonal or Hessenberg form using Householder transformations. The approach is to aggregate the transformations and to apply them in a blocked fashion, thus achieving algorithms that are rich in matrix-matrix operations. These red...
In this paper we describe block algorithms for the reduction of a real symmetric matrix to tridiagonal form and for the reduction of a general real matrix to either bidiagonal or Hessenberg form using Householder transformations. The approach is to aggregate the transformations and to apply them in a blocked fashion, thus achieving algorithms that are rich in matrix-matrix operations. These red...
In this paper we describe block algorithms for the reduction of a real symmetric matrix to tridiagonal form and for the reduction of a general real matrix to either bidiagonal or Hessenberg form using Householder transformations. The approach is to aggregate the transformations and to apply them in a blocked fashion, thus achieving algorithms that are rich in matrix-matrix operations. These red...
An efficient numerical method is developed for evaluating φ(A), where A is a symmetric matrix and φ is the function defined by φ(x) = (ex − 1)/x = 1+ x/2 + x2/6+ .... This matrix function is useful in the so-called exponential integrators for differential equations. In particular, it is related to the exact solution of the ODE system dy/dt = Ay + b, where A and b are t-independent. Our method a...
The non equilibrium Green’s function method used in density functional theory based methods for computing electron transport at nano scale requires repeated inversions of a large block tridiagonal matrix. This calculation constitutes a substantial part of the total execution time, and therefore an efficient special method for the block tridiagonal matrix inversion was developed recently. This p...
Recently Laurie presented a new algorithm for the computation of (2n+1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. This algorithm first determines a symmetric tridiagonal matrix of order 2n+ 1 from certain mixed moments, and then computes a partial spectral factorization. We describe a new algorithm that does not require the entries of the tridiagonal matrix to b...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید