نتایج جستجو برای: variable order fractional calculus
تعداد نتایج: 1228236 فیلتر نتایج به سال:
In this paper, the fractional--order form of three dimensional chemostat model with variable yields is introduced. The stability analysis of this fractional system is discussed in detail. In order to study the dynamic behaviours of the mentioned fractional system, the well known nonstandard (NSFD) scheme is implemented. The proposed NSFD scheme is compared with the forward Euler and ...
In this paper, a class of fractional order systems is considered and simple fractional order observers have been proposed to estimate the system’s state variables. By introducing a fractional calculus into the observer design, the developed fractional order observers guarantee the estimated states reach the original system states. Using the fractional order Lyapunov approach, the stability (zer...
. . . . . . . . . . . . . . . . . . . . . . . . . p. 223
Fractional calculus was introduced in many fields of science and engineering long time ago. It was first developed by mathematicians in the middle of the ninetieth century. During the past decades, fractional calculus has gained great interest in several applications [1]. For instance, fractional order systems and controllers have been applied to improve performance and robustness properties in...
Fractional calculus is the generalization of integer-order calculus to rational order. This subject has at least three hundred years of history. However, it was traditionally regarded as a pure mathematical field and lacked real world applications for a very long time. In recent decades, fractional calculus has re-attracted the attention of scientists and engineers. For example, many researcher...
The aim of this paper is to establish the existence of solutions of boundary value problems of nonlinear fractional integro-differential equations involving Caputo fractional derivative by using the techniques such as fractional calculus, H"{o}lder inequality, Krasnoselskii's fixed point theorem and nonlinear alternative of Leray-Schauder type. Examples are exhibited to illustrate the main resu...
The term fractional calculus is more than 300 years old. It is a generalization of the ordinary differentiation and integration to non-integer (arbitrary) order. The subject is as old as the calculus of differentiation and goes back to times when Leibniz, Gauss, and Newton invented this kind of calculation. In a letter to L’Hospital in 1695 Leibniz raised the following question (Miller and Ross...
It is well known that the complex step method is a tool that calculates derivatives by imposing a complex step in a strict sense. We extended the method by employing the fractional calculus differential operator in this paper. The fractional calculus can be taken in the sense of the Caputo operator, Riemann-Liouville operator, and so forth. Furthermore, we derived several approximations for com...
This report is aimed at the engineering and/or scientific professional who wishes to learn about Fractional Calculus and its possible applications in his/her field(s) of study. The intent is to first expose the reader to the concepts, applicable definitions, and execution of fractional calculus (including a discussion of notation, operators, and fractional order differential equations), and sec...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید