نتایج جستجو برای: vertex function

تعداد نتایج: 1247013  

In this paper we define a new labeling called skolem odd difference mean labeling and investigate skolem odd difference meanness of some standard graphs. Let G = (V,E) be a graph with p vertices and q edges. G is said be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, . . . , p + 3q − 3} satisfying f is 1−1 and the induced map f : E(G) → {1, 3, 5, . . . , 2q−1} de...

Let G be a (p,q) graph. An injective map f : E(G) → {±1,±2,...,±q} is said to be an edge pair sum labeling if the induced vertex function f*: V (G) → Z - {0} defined by f*(v) = ΣP∈Ev f (e) is one-one where Ev denotes the set of edges in G that are incident with a vertex v and f*(V (G)) is either of the form {±k1,±k2,...,±kp/2} or {±k1,±k2,...,±k(p-1)/2} U {±k(p+1)/2} according as p is even or o...

1997
R. Brower S. Chandrasekharan

Approximately perfect lattice actions have a potential to suppress lattice artifacts much more than the O(a) improvement, which is very fashionable at this conference. However, it is still unclear how well this more sophisticated improvement program can be applied to QCD. Here we discuss our recent progress in the construction of a quasi-perfect action for QCD, and show preliminary results of i...

We introduce the notion of uniform number of a graph. The  uniform number of a connected graph $G$ is the least cardinality of a nonempty subset $M$ of the vertex set of $G$ for which the function $f_M: M^crightarrow mathcal{P}(X) - {emptyset}$ defined as $f_M(x) = {D(x, y): y in M}$ is a constant function, where $D(x, y)$ is the detour distance between $x$ and $y$ in $G$ and $mathcal{P}(X)$ ...

‎The first variable Zagreb index of graph $G$ is defined as‎ ‎begin{eqnarray*}‎ ‎M_{1,lambda}(G)=sum_{vin V(G)}d(v)^{2lambda}‎, ‎end{eqnarray*}‎ ‎where $lambda$ is a real number and $d(v)$ is the degree of‎ ‎vertex $v$‎. ‎In this paper‎, ‎some upper and lower bounds for the distribution function and expected value of this index in random increasing trees (rec...

Journal: :communication in combinatorics and optimization 0
nasrin dehgardi sirjan university of technology, sirjan 78137, iran lutz volkmann lehrstuhl ii fur mathematik, rwth aachen university, 52056 aachen, germany

let $d$ be a finite and simple digraph with vertex set $v(d)$‎.‎a signed total roman $k$-dominating function (str$k$df) on‎‎$d$ is a function $f:v(d)rightarrow{-1‎, ‎1‎, ‎2}$ satisfying the conditions‎‎that (i) $sum_{xin n^{-}(v)}f(x)ge k$ for each‎‎$vin v(d)$‎, ‎where $n^{-}(v)$ consists of all vertices of $d$ from‎‎which arcs go into $v$‎, ‎and (ii) every vertex $u$ for which‎‎$f(u)=-1$ has a...

Journal: :transactions on combinatorics 2015
j. amjadi m. chellali m. falahat s. m. sheikholeslami

a 2-emph{rainbow dominating function} (2rdf) on a graph $g=(v, e)$ is afunction $f$ from the vertex set $v$ to the set of all subsets of the set${1,2}$ such that for any vertex $vin v$ with $f(v)=emptyset$ thecondition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled. a 2rdf $f$ isindependent (i2rdf) if no two vertices assigned nonempty sets are adjacent.the emph{weight} of a 2rdf $f$ is the value $o...

2003
Y oshiko Oi

Non-radiative surface plasma oscillations in a semi-infinite metal are quantized by using a hydrodynamic jellium model for electrons in the metal. In consequence of the quantization, the electronSF (surface plasmon) vertex function is obtained for the overall region of the surface plasmon wave vector k. In the electrostatic limit, it coincides with the usual electrostatic vertex function obtain...

Journal: :Nuclear Physics B - Proceedings Supplements 1995

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید