نتایج جستجو برای: vertex pi polynomial
تعداد نتایج: 176159 فیلتر نتایج به سال:
The vertex Padmakar-Ivan (PIv) index of a graph G was introduced as the sum over all edges e = uv of G of the number of vertices which are not equidistant to the vertices u and v. In this paper we provide an analogue to the results of T. Mansour and M. Schork [The PI index of bridge and chain graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 723-734]. Two efficient formulas for calculating th...
The growth function of a graph with respect to a vertex is near polynomial if there exists a polynomial bounding it above for infinitely many positive integers. In the paper vertex-symmetric undirected graphs and vertex-symmetric directed graphs with coinciding inand out-degrees are described in the case their growth functions are near polynomial.
Let G and H be connected graphs. The tensor product G + H is a graph with vertex set V(G+H) = V (G) X V(H) and edge set E(G + H) ={(a , b)(x , y)| ax ∈ E(G) & by ∈ E(H)}. The graph H is called the strongly triangular if for every vertex u and v there exists a vertex w adjacent to both of them. In this article the tensor product of G + H under some distancebased topological indices are investiga...
The vertex PI index PI(G) = ∑ xy∈E(G)[nxy(x) + nxy(y)] is a distance-based molecular structure descriptor, where nxy(x) denotes the number of vertices which are closer to the vertex x than to the vertex y and which has been the considerable research in computational chemistry dating back to Harold Wiener in 1947. A connected graph is a cactus if any two of its cycles have at most one common ver...
Let $G$ be a molecular graph with vertex set $V(G)$, $d_G(u, v)$ the topological distance between vertices $u$ and $v$ in $G$. The Hosoya polynomial $H(G, x)$ of $G$ is a polynomial $sumlimits_{{u, v}subseteq V(G)}x^{d_G(u, v)}$ in variable $x$. In this paper, we obtain an explicit analytical expression for the expected value of the Hosoya polynomial of a random benzenoid chain with $n$ hexagon...
Given a vertex-weighted graph G = (V,E) and a set S ⊆ V , a subset feedback vertex set X is a set of the vertices of G such that the graph induced by V \ X has no cycle containing a vertex of S. The Subset Feedback Vertex Set problem takes as input G and S and asks for the subset feedback vertex set of minimum total weight. In contrast to the classical Feedback Vertex Set problem which is obtai...
A graph is distance-hereditary if for any pair of vertices, their distance in every connected induced subgraph containing both vertices the same as original graph. The Distance-Hereditary Vertex Deletion problem asks, given a G on n and an integer k, whether there set S at most k such that $$G-S$$ distance-hereditary. This important due to its connection parameter rank-width because graphs are ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید