The linear discrepancy of a poset P is the least k such that there is a linear extension L of P such that if x and y are incomparable, then |hL(x)− hL(y)| ≤ k. Whereas the weak discrepancy is the least k such that there is a weak extension W of P such that if x and y are incomparable, then |hW (x)− hW (y)| ≤ k. This paper resolves a question of Tanenbaum, Trenk, and Fishburn on characterizing w...