نتایج جستجو برای: weakly primary like submodule

تعداد نتایج: 1299060  

In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...

Journal: :journal of algebra and related topics 2015
r. beyranvand f. moradi

let $r$ be an arbitrary ring and $t$ be a submodule of an $r$-module $m$. a submodule $n$ of $m$ is called $t$-small in $m$ provided for each submodule $x$ of $m$, $tsubseteq x+n$ implies that $tsubseteq x$. we study this mentioned notion which is a generalization of the small submodules and we obtain some related results.

Journal: :bulletin of the iranian mathematical society 0
t. amouzegar kalati mazandaran university, department of mathematic d. keskin tutuncu hacettepe university, mathematics department

let $m_r$ be a module with $s=end(m_r)$. we call a submodule $k$ of $m_r$ annihilator-small if $k+t=m$, $t$ a submodule of $m_r$, implies that $ell_s(t)=0$, where $ell_s$ indicates the left annihilator of $t$ over $s$. the sum $a_r(m)$ of all such submodules of $m_r$ contains the jacobson radical $rad(m)$ and the left singular submodule $z_s(m)$. if $m_r$ is cyclic, then $a_r(m)$ is the unique ...

Journal: :Illinois Journal of Mathematics 2023

We introduce the notion of Burch submodules and weakly m-full modules over a local ring (R,m) study their properties. One our main results shows that satisfy 2-Tor rigid test also show (R,m), submodule M finitely generated R-module X, such either M=mX or M(⊆mX) is in 1-Tor rigid, module provided X faithful (and X∕M has finite length when m-full). As an application, we give some new class rings ...

2004
Majid M. Ali David J. Smith

The purpose of this paper is to investigate pure submodules of multiplication modules. We introduce the concept of idempotent submodule generalizing idempotent ideal. We show that a submodule of a multiplication module with pure annihilator is pure if and only if it is multiplication and idempotent. Various properties and characterizations of pure submodules of multiplication modules are consid...

Journal: :European Journal of Pure and Applied Mathematics 2022

The purpose of this paper is to introduce a new concept in module M over ring R, called e∗-essential submodule, which generalization an essential submodule. We will some examples and properties about such that, what the inverse image intersection submodules direct sum submodules. show relationship between submodule Noetherian R-module. Also we define e∗-closed with

2007
Yoshiki KINOSHITA Andreas KNOBEL

The complement operation on modules has not been argued so far as we know. We observe that it plays an important role in software maintenance, as well as join and meet operations. A de nition of a module and operations on them is given in category theoretic terms; we adopt well-known characterization of complement as a left adjoint to join. The de nition is rst given locally and then extended t...

2014
NAZERAN IDREES

We present an algorithm to compute the primary decomposition of a submodule N of the free module Z[x1, . . . , xn]. For this purpose we use algorithms for primary decomposition of ideals in the polynomial ring over the integers. The idea is to compute first the minimal associated primes of N , i.e. the minimal associated primes of the ideal Ann(Z[x1, . . . , xn]/N ) in Z[x1, . . . , xn] and the...

2007
Majid M. Ali

All rings are commutative with identity and all modules are unital. Let R be a ring, M an R-module and R(M), the idealization of M . Homogenous ideals of R(M) have the form I (+)N , where I is an ideal of R and N a submodule of M such that IM ⊆ N . A ring R (M) is called a homogeneous ring if every ideal of R (M) is homogeneous. In this paper we continue our recent work on the idealization of m...

2015
A. Najafizadeh

The notion of the square submodule of a module M over an arbitrary commutative ring R, which is denoted by RM, was introduced by Aghdam and Najafizadeh in [3]. In fact, RM is the R−submodule of M generated by the images of all bilinear maps on M. Furthermore, given a submodule N of an R−module M, we say that M is nil modulo N if μ(M×M) ≤ N for all bilinear maps μ on M. The main question about t...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید