نتایج جستجو برای: zero divisor graphs
تعداد نتایج: 247308 فیلتر نتایج به سال:
In previous literature Coykendall & Maney, as well as Axtell & Stickles, have discussed the concept of irreducible divisor graphs of elements in domains and ring with zero-divisors respectively, with two different definitions. In this paper we seek to look at the irreducible divisor graphs of ring elements under a hybrid definition of the two previous ones—in hopes that this graph will reveal s...
This paper establishes a set of theorems that describe the diameter of a zero-divisor graph for a finite direct product R1 × R2 × · · · × Rn with respect to the diameters of the zero-divisor graphs of R1, R2, · · · , Rn−1 and Rn(n > 2).
The paper studies the following question: Given a ring R, when does the zero-divisor graph (R) have a regular endomorphism monoid? We prove if R contains at least one nontrivial idempotent, then (R) has a regular endomorphism monoid if and only if R is isomorphic to one of the following rings: Z2 × Z2 × Z2; Z2 × Z4; Z2 × (Z2[x]/(x)); F1 × F2, where F1, F2 are fields. In addition, we determine a...
In this paper we will investigate the interactions between the zero divisor graph, the annihilator class graph, and the associate class graph of commutative rings. Acknowledgements: We would like to thank the Center for Applied Mathematics at the University of St. Thomas for funding our research. We would also like to thank Dr. Michael Axtell for his help and guidance, as well as Darrin Weber f...
For any commutative ring R that is not a domain, there is a zerodivisor graph, denoted Γ(R), in which the vertices are the nonzero zero-divisors of R and two distinct vertices x and y are joined by an edge exactly when xy = 0. In [Sm2], Smith characterized the graph structure of Γ(R) provided it is infinite and planar. In this paper, we give a ring-theoretic characterization of R such that Γ(R)...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید