نتایج جستجو برای: آنالیز خمینه ها
تعداد نتایج: 356110 فیلتر نتایج به سال:
چکیده ندارد.
اساسی ترین مثال از زیر خمینه های با انحنای مقطعی از پایین کراندار ابررویه های با انحنای مقطعی مثبت در فضای اقلیدسی هستند. این ابررویه ها موضعا محدب هستند به این معنی که هر نقطه از آنها یک همسایگی دارد که به طور کامل در یک طرف صفحه مماس در آن نقطه واقع می شود. در این پایان نامه در ابتدا ساختار یک خم پرشده در فضای اقلیدسی 3- بعدی شرح داده می شود. سپس فضاهای الکساندروف تعریف می شوند و در چارچوب ای...
در این پایان نامه ابتدا معرفی بیش خمینه های هموار از دیدگاه هندسه جبری مورد مطالعه قرار می گیرد و پس از آن بحث درباره بیش گروه های لی و جبر لی وابسته به آن ها از نظر خواهد گذشت. سپس بیش خمینه های ریمانی مورد بررسی قرار گرفته و به گسترش مفاهیمی همچون هموستارها، مشتق هموردا، میدان های برداری موازی، انتقال موازی، ژئودزیک ها و میدان های برداری کیلینگ بر این فضاها پرداخته خواهد شد.
در این پایان نامه خمینه های شبه متری تماسی و خمینه های $cr$ معرفی شده و رابطه بین این دو بررسی می شود. همچنین برخی قضایا که درمورد یک خمینه شبه متری تماسی برقرار است برای یک خمینه تقریبا $cr$ ناتبهگون نیز اثبات می شود.
موضوع این رساله که زیرهمسازی و چند زیرهمسازی توابع محدب ژئودزیک روی خمینه های ریمانی و کیلری می باشد. شرح مقاله ای از گرین و وو در همین موضوع است که هدف نهایی آن اثبات دو قضیه راجع به زیرهمسازی توابع محدب ژئودزیک روی خمینه های ریمانی و چند زیرهمسازی توابع محدب ژئودزیک روی خمینه های کیلری است . شرح بیشتر این مطالب در متن رساله خواهد آمد.
در این پایان نامه برخی از ویژگی های هندسی جفت سایای گسترش یافته ارائه می شود به بیان روشن تر ابتدا شرط های هندسی انتگرال پذیری جفت سایای گسترش یافته بیان می شود پس از آن با بهره بردن از این شرط ها، بینشی از برگ بندی مشخصه خمینه های سایای گسترش یافته در دسترس است. سرانجام نشان داده می شود، هر خمینه هموار مجهز به جفت سایای گسترش یافته با حاصلضربی از یک خمینه مختلط گسترش یافته و یک خمینه تقریباً دو...
مهمترین هدف ما از نوشتن این پایان نامه بررسی هندسه به وسیله کلافهای مماسی است. به عبارت دیگر کلافهای مماسی خمینه های ریمانی را مورد مطالعه قرار میدهیم و کروشه لی آنها را معرفی میکنیم. مترهای طبیعی sasaki و cheeger-gromollرا بررسی میکنیم والتصاقهای levi-civita انها و انحناهای مختلف انها را محاسه میکنیم. با این کار به ارتباط های جالبی بین هندسه خمینه ریمانی(gوm) و کلاف مماسی آن tmکه با این...
نخستین بار برگر ثابت کرد اگر روی یک خمینه ی ریمانی همبند ساده متر تحویل ناپذیر تعریف شود گروه هولونومی آن زیر گروهی از u(m),so(n),su(m),sp(m),sp(m)sp(1),spin(7) و یا زیر گروهی از g2 خواهد بود. اما اینکه تحت چه شراطی هر یک از این حالت ها می تواند اتفاق بیافتد و آیا اینکه همه ی این حالات اتفاق می افتند یا نه، مطلبی بود که سی سال بعد یعنی در سال 1985 دانشمندان موفق شدند آن را نشان دهند و...
در این پایان نامه به نظریه هندسه دیفرانسیل در مورد زیر خمینه های فضا فرم های مختلط بحث شده است که زیر فضای مماس هولمورفیک از ثعد ماکزیمال می باشد. در این نوع خمینه ها یک ساختار تقریبا کنتاکت از فضای زمینه القا می شود با استفاده از شرط معین روی ساختار تقریبا کنتاکت آن را تبدیل به ساختار کنتاکت می کنیم و همچنین شرط معین روی فرم اساسی دوم به یک کلاس بندی جدید از این نوع زیر خمینه ها می رسیم.در این...
فرض کنید m یک منیفلد هموار همبند باشد و α یک متریک ریمانی روی m باشد، در این صورت یک متریکراندرس روی m عبارت است از یک متریک فینسلر به فرم f =β + α که در آن β یک 1-فرمی هموار با طول کمتر از یک می باشد. در این پایان نامه ابتدا هندسه فینسلری متریک های راندرس چپ پایا و دو پایا روی گروه های لی مورد بررسی قرار می گیرند سپس ژئودزیک های متریک های فینسلری چپ پایا و دو پایا روی گروه های لی محاسه می...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید