Let \(X\), \(Y\) and \(Z\) be Banach spaces let \(U\) a subspace of \(\mathcal{L}(X^*,Y)\), the space all operators from \(X^*\) to \(Y\). An operator \(S\colon U \to Z\) is said \((\ell^s_p,\ell_p)\)-summing (where \(1\leq p <\infty\)) if there constant \(K\geq 0\) such that
\(\left( \sum_{i=1}^n \|S(T_i)\|_Z^p \right)^{1/p}\le K\sup_{x^* \in B_{X^*}} \left(\sum_{i=1}^n \|T_i(x^*)\|_Y^p\right...