نتایج جستجو برای: aut ecology
تعداد نتایج: 54325 فیلتر نتایج به سال:
We prove a characterization theorem for the unit polydisc ∆ ⊂ C in the spirit of a recent result due to Kodama and Shimizu. We show that if M is a connected n-dimensional complex manifold such that (i) the group Aut(M) of holomorphic automorphisms of M acts on M with compact isotropy subgroups, and (ii) Aut(M) and Aut(∆) are isomorphic as topological groups equipped with the compact-open topolo...
We study the complex of partial bases of a free group, which is an analogue for Aut(Fn) of the curve complex for the mapping class group. We prove that it is connected and simply connected, and we also prove that its quotient by the Torelli subgroup of Aut(Fn) is highly connected. Using these results, we give a new, topological proof of a theorem of Magnus that asserts that the Torelli subgroup...
motivated by a celebrated theorem of schur, we show that if~$gamma$ is a normal subgroup of the full automorphism group $aut(g)$ of a group $g$ such that $inn(g)$ is contained in $gamma$ and $aut(g)/gamma$ has no uncountable abelian subgroups of prime exponent, then $[g,gamma]$ is finite, provided that the subgroup consisting of all elements of $g$ fixed by $gamma$ has finite index. so...
We prove that given any n-pointed prestable curve C of genus g with linearly reductive automorphism group Aut(C), there exists an Aut(C)equivariant miniversal deformation of C over an affine variety W . In other words, we prove that the algebraic stack Mg,n parametrizing n-pointed prestable curves of genus g has an étale neighborhood of [C] isomorphic to the quotient stack [W/Aut(C)].
We prove that the automorphism group of any non-abelian free group F is complete. The key technical step in the proof: the set of all conjugations by powers of primitive elements is first-order parameter-free definable in the group Aut(F ). Introduction In 1975 J. Dyer and E. Formanek [2] had proved that the automorphism group of a finitely generated non-abelian free group F is complete (that i...
Let $G$ be a group and $Aut(G)$ be the group of automorphisms of $G$. For any natural number $m$, the $m^{th}$-autocommutator subgroup of $G$ is defined as: $$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G,alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$ In this paper, we obtain the $m^{th}$-autocommutator subgroup of all finite abelian groups.
Question. Given a connected curve C 0 , proper and smooth over a field K of characteristic p, given a subgroup H ⊂ Aut(C 0); can we lift the pair (C 0 , H) to characteristic zero? ((We shall see that the answer is " NO " in general; for cyclic groups we conjecture that the answer is " YES " .)) Example (1) (Roquette). Consider the normalization of the completion of the curve given by the affine...
BugReports https://bugs.r-project.org NeedsCompilation yes Author José Pinheiro [aut] (S version), Douglas Bates [aut] (up to 2007), Saikat DebRoy [ctb] (up to 2002), Deepayan Sarkar [ctb] (up to 2005), EISPACK authors [ctb] (src/rs.f), Siem Heisterkamp [ctb] (Author fixed sigma), Bert Van Willigen [ctb] (Programmer fixed sigma), R-core [aut, cre] Maintainer R-core Reposi...
فرض کنیم x یک گراف باشد. گراف x را رأس انتقالی ویال انتقالی یا کمان انتقالی (متقارن)گوییم هرگاه گروه خودریختی های گراف x یعنی (aut(x روی مجموعه رئوس و یال هاوکمان هاانتقالی باشد. فرض کنیم x یک گراف رأس انتقالی و(aut(x دارای دو مدار با طول برابر بر روی مجموعه کمان های گراف x باشد. در این صورت گراف x را نیم کمان انتقالی یا نیم یال انتقالی گوییم هرگاه (aut(x به ترتیب یک یا دو مدار روی مجموعه یال ه...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید