نتایج جستجو برای: c means

تعداد نتایج: 1370701  

2011
Ruslan Miniakhmetov

Many data sets to be clustered are stored in relational databases. Having a clusterization algorithm implemented in SQL provides easier clusterization inside a relational DBMS than outside with some alternative tools. In this paper we propose Fuzzy c-Means clustering algorithm adapted for PostgreSQL open-source relational DBMS.

2012
Kwang-Baek Kim Doo Heon Song Jae-Hyun Cho

In general, road lane detection from a traffic surveillance camera is done by the analysis of geometric shapes of the road. Thus, Hough transform or B-snake technology is preferred to intelligent pattern matching or machine learning such as neural network. However, we insist that the feasibility of using intelligent technique in this area is quite undervalued. In this paper, we first divide the...

2005
Ozy Sjahputera James M. Keller

Determining if two images acquired at different times and under different viewing conditions contain the same scene is a difficult problem in computer vision. We demonstrate an approach that utilizes spatial relationships among the objects in the two scenes that ultimately produces a mapping of objects from one view to the other, and as a bonus, recovers the viewing transformation parameters. T...

2012
A. H. Hadjahmadi M. M. Homayounpour S. M. Ahadi

Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some kinds...

Journal: :IJFSA 2011
Roland Winkler Frank Klawonn Rudolf Kruse

High dimensions have a devastating effect on the FCM algorithm and similar algorithms. One effect is that the prototypes run into the centre of gravity of the entire data set. The objective function must have a local minimum in the centre of gravity that causes FCM’s behaviour. In this paper, examine this problem. This paper answers the following questions: How many dimensions are necessary to ...

2002
Dat Tran Michael Wagner

In speaker verification, a claimed speaker’s score is computed to accept or reject the speaker claim. Most of the current normalisation methods compute the score as the ratio of the claimed speaker’s and the impostors’ likelihood functions. Based on analysing false acceptance error occured by the current methods, we propose a fuzzy c-means clusteringbased normalisation method to find a better s...

2006
Juan Manuel Górriz Javier Ramírez Ignacio Turias Carlos García Puntonet Jesús González Elmar Wolfgang Lang

An effective voice activity detection (VAD) algorithm is proposed for improving speech recognition performance in noisy environments. The proposed speech/pause discrimination method is based on a hard-decision clustering approach built over a set of subband logenergies. Detecting the presence of speech frames (a new cluster) is achieved using a basic sequential algorithm scheme (BSAS) according...

Journal: :Appl. Soft Comput. 2017
Yaman Akbulut Abdulkadir Sengür Yanhui Guo Kemal Polat

Data clustering is an important step in data mining and machine learning. It is especially crucial to analyze the data structures for further procedures. Recently a new clustering algorithm known as ‘neutrosophic c-means’ (NCM) was proposed in order to alleviate the limitations of the popular fuzzy c-means (FCM) clustering algorithm by introducing a new objective function which contains two typ...

2002
JAMES C. BEZDEK ROBERT EHRLICH

nThis paper transmits a FORTRAN-IV coding of the fuzzy c-means (FCM) clustering program. The FCM program is applicable to a wide variety of geostatistical data analysis problems. This program generates fuzzy partitions and prototypes for any set of numerical data. These partitions are useful for corroborating known substructures or suggesting substructure in unexplored data. The clustering crit...

2005
Juraj Horváth

This contribution describes using fuzzy c-means clustering method in image segmentation. Segmentation method is based on a basic region growing method and uses membership grades’ of pixels to classify pixels into appropriate segments. Images were in RGB color space, as feature space was used L*u*v* color space. Results were obtained on five color test images by experimental simulations in Matlab.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید