نتایج جستجو برای: central alpha skew armendariz rings
تعداد نتایج: 717688 فیلتر نتایج به سال:
We study certain properties of derivations on semiprime rings. The main purpose is to prove the following result: let R be a semiprime ring with center Z(R), and let f , g be derivations of R such that f(x)x+xg(x) ∈ Z(R) for all x ∈ R, then f and g are central. As an application, we show that noncommutative semisimple Banach algebras do not admit nonzero linear derivations satisfying the above ...
In this paper, we study the arithmetics of skew polynomial rings over finite fields, mostly from an algorithmic point of view. We give various algorithms for fast multiplication, division and extended Euclidean division. We give a precise description of quotients of skew polynomial rings by a left principal ideal, using results relating skew polynomial rings to Azumaya algebras. We use this des...
A ring $R$ is called a left Ikeda-Nakayama (left IN-ring) if the right annihilator of intersection any two ideals sum annihilators. As generalization IN-rings, SA-ring annihilators an ideal $R$. It natural to ask IN and SA property can be extended from $R[x; \alpha, \delta]$. In this note, results concerning conditions will allow these properties transfer skew polynomials $R[x;\alpha,\delta]$ a...
We generalize the construction of linear codes via skew polynomial rings by using Galois rings instead of finite fields as coefficients. The resulting non commutative rings are no longer left and right Euclidean. Codes that are principal ideals in quotient rings of skew polynomial rings by a two sided ideals are studied. As an application, skew constacyclic self-dual codes over GR(4) are constr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید