نتایج جستجو برای: dimensional nonlinear volterra integral equations
تعداد نتایج: 872721 فیلتر نتایج به سال:
The method of quasilinearization is an effective tool to solve nonlinear equations when some conditions on the nonlinear term of the problem are satisfied. When the conditions hold, applying this technique gives two sequences of coupled linear equations and the solutions of these linear equations are quadratically convergent to the solution o...
A numerical method for solving nonlinear Fredholm-Volterra integral equations is presented. The method is based upon Lagrange functions approximations. These functions together with the Gaussian quadrature rule are then utilized to reduce the Fredholm-Volterra integral equations to the solution of algebraic equations. Some examples are included to demonstrate the validity and applicability of t...
An ecient method, based on the Legendre wavelets, is proposed to solve thesecond kind Fredholm and Volterra integral equations of Hammerstein type.The properties of Legendre wavelet family are utilized to reduce a nonlinearintegral equation to a system of nonlinear algebraic equations, which is easilyhandled with the well-known Newton's method. Examples assuring eciencyof the method and its sup...
Abstract— A new polynomial method to solve Volterra–Fredholm Integral equations is presented in this work. The method is based upon Shifted Legendre Polynomials. The properties of Shifted Legendre Polynomials and together with Gaussian integration formula are presented and are utilized to reduce the computation of Volterra–Fredholm Integral equations to a system of algebraic equations. Some num...
stefan problem with kinetics is reduced to a system of nonlinear volterra integral equations of second kind and newton's method is applied to linearize it. product integration solution of the linear form is found and sufficient conditions for convergence of the numerical method are given. an example is provided to illustrated the applicability of the method.
in this paper, an effective direct method to determine the numerical solution of linear and nonlinear fredholm and volterra integral and integro-differential equations is proposed. the method is based on expanding the required approximate solution as the elements of chebyshev cardinal functions. the operational matrices for the integration and product of the chebyshev cardinal functions are des...
A collocation procedure is developed for the linear and nonlinear Volterra integral equations, using the globally defined Sinc and auxiliary basis functions. We analytically show the exponential convergence of the Sinc collocation method for approximate solution of Volterra integral equations. Numerical examples are included to confirm applicability and justify rapid convergence of our method.
Alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear Volterra-Hammerstein integral equations. For this purpose, the operational matrices of integration and the product for ALPs are derived. Then, using the collocation method, the considered problem is reduced into a set of nonlinear algebraic equations. The error analysis of the method is given an...
This paper gives an efficient numerical method for solving the nonlinear system of Volterra-Fredholm integral equations. A Legendre-spectral method based on the Legendre integration Gauss points and Lagrange interpolation is proposed to convert the nonlinear integral equations to a nonlinear system of equations where the solution leads to the values of unknown functions at collocation points.
The semidiscretization in space of Volterra-Fredholm integral equations (arising, for example, as mathematical models of the spreading of epidemics) leads to large systems of Volterra integral equations. Here, we study inexpensive timestepping methods using certain DQ (= direct quadrature) methods which are employed in a way that exploits the local superconvergence properties of spatial colloca...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید