نتایج جستجو برای: dolphin echolocation
تعداد نتایج: 4021 فیلتر نتایج به سال:
Broadband simulated dolphin echolocation signals were used to measure the ex situ backscatter properties of mesopelagic boundary community (MBC) in order to gain a better understanding of the echolocation process of spinner dolphins foraging on the MBC. Subjects were captured by trawling with a 2-m-opening Isaacs-Kidd Midwater Trawl. Backscatter measurements were conducted on the ship in a 2000...
Dolphin sonar research has been conducted for several decades and much has been learned about the capabilities of echolocating dolphins to detect, discriminate and recognize underwater targets. The results of these research projects suggest that dolphins possess the most sophisticated of all sonar for short ranges and shallow water where reverberation and clutter echoes are high. The critical f...
An array of four hydrophones arranged in a symmetrical star configuration was used to measure the echolocation signals of the Atlantic spotted dolphin (Stenella frontalis) in the Bahamas. The spacing between the center hydrophone and the other hydrophones was 45.7 cm. A video camera was attached to the array and a video tape recorder was time synchronized with the computer used to digitize the ...
Franciscana dolphins are small odontocetes hard to study in the field. In particular, little is known on their echolocation behavior in the wild. In this study we recorded 357 min and analyzed 1019 echolocation signals in the Rio Negro Estuary, Argentina. The clicks had a peak frequency at 139 kHz, and a bandwidth of 19 kHz, ranging from 130 to 149 kHz. This is the first study describing echolo...
The interclick intervals of captive dolphins are known to be longer than the two-way transit time between the dolphin and a target. In the present study, the interclick intervals of free-ranging baiji, finless porpoises, and bottlenose dolphins in the wild and in captivity were compared. The click intervals in open waters ranged up to 100-200 ms, whereas the click intervals in captivity were in...
Underwater noise pollution from the world’s longest cross-sea bridge—the Hong Kong-Zhuhai-Macao Bridge (HZMB)—which stretches across Chinese White Dolphin National Nature Reserve (of People’s Republic of China, PRC) in Pearl River Estuary may affect distribution local humpback dolphins. In this study, static passive acoustic monitoring was applied to monitor biosonar activity dolphins and under...
Echolocating animals exercise an extensive control over the spectral and temporal properties of their biosonar signals to facilitate perception of their actively generated auditory scene when homing in on prey. The intensity and directionality of the biosonar beam defines the field of view of echolocating animals by affecting the acoustic detection range and angular coverage. However, the spati...
Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild.
Toothed whales use echolocation to locate and track prey. Most knowledge of toothed whale echolocation stems from studies on trained animals, and little is known about how toothed whales regulate and use their biosonar systems in the wild. Recent research suggests that an automatic gain control mechanism in delphinid biosonars adjusts the biosonar output to the one-way transmission loss to the ...
Several taxonomically distinct mammalian groups – certain microbats and cetaceans (e.g. dolphins) – share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory 35 processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a derived auditory processing system....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید