نتایج جستجو برای: flap endonuclease 1
تعداد نتایج: 2775035 فیلتر نتایج به سال:
The existence of redundant replication and repair systems that ensure genome stability underscores the importance of faithful DNA replication. Nowhere is this complexity more evident than in challenging DNA templates, including highly repetitive or transcribed sequences. Here, we demonstrate that flap endonuclease 1 (FEN1), a canonical lagging strand DNA replication protein, is required for nor...
Reconstitution of eukaryotic Okazaki fragment processing implicates both one- and two-nuclease pathways for processing flap intermediates. In most cases, FEN1 (flap endonuclease 1) is able to efficiently cleave short flaps as they form. However, flaps escaping cleavage bind replication protein A (RPA) inhibiting FEN1. The flaps must then be cleaved by Dna2 nuclease/helicase before FEN1 can act....
Flap endonuclease 1 (FEN1), a DNA repair protein, is important in preventing carcinogenesis. Two functional germ line variants -69G>A (rs174538) and +4150G>T (rs4246215) in the FEN1 gene have been associated with risk of various types of cancer. The aim of the present study was to evaluate the possible impact of FEN1 polymorphisms on risk of breast cancer (BC) in a sample of Iranian subjects. T...
Despite the wealth of information available on the biochemical functions and our recent findings of its roles in genome stability and cancer avoidance of the structure-specific flap endonuclease 1 (FEN1), its cellular compartmentalization and dynamics corresponding to its involvement in various DNA metabolic pathways are not yet elucidated. Several years ago, we demonstrated that FEN1 migrates ...
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, ...
Flap endonuclease 1 (FEN1) participates in the DNA replication and repair processes, which plays an important role maintaining genome stability. Determination of FEN1 level is highly required for biochemical studies clinical diagnosis. Herein, a novel electrochemical approach detection developed based on clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated (Cas) ...
Saccharomyces cerevisiae Dna2 possesses both helicase and endonuclease activities. Its endonuclease activity is essential and well suited to remove RNA-DNA primers of Okazaki fragments. In contrast, its helicase activity, although required for optimal growth, is not essential when the rate of cell growth is reduced. These findings suggest that DNA unwinding activity of Dna2 plays an auxiliary r...
Human flap endonuclease 1 (FEN1) and related structure-specific 5'nucleases precisely identify and incise aberrant DNA structures during replication, repair and recombination to avoid genomic instability. Yet, it is unclear how the 5'nuclease mechanisms of DNA distortion and protein ordering robustly mediate efficient and accurate substrate recognition and catalytic selectivity. Here, single-mo...
DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5'-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5'-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA bin...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید