نتایج جستجو برای: general autoregressive conditional heteroskedastic

تعداد نتایج: 783460  

Journal: :Communications in Statistics - Simulation and Computation 2008
Abdou Kâ Diongue Dominique Guégan

In this paper, we discuss the parameter estimation for a k-factor generalized long memory process with conditionally heteroskedastic noise. Two estimation methods are proposed. The rst method is based on the conditional distribution of the process and the second is obtained as an extension of Whittle's estimation approach. For comparison purposes, Monte Carlo simulations are used to evaluate th...

2007
Tim BOLLERSLEV

Most high-frequency asset returns exhibit seasonal volatility patterns. This article proposes a new class of models featuring periodicity in conditional heteroscedasticity explicitly designed to capture the repetitive seasonal time variation in the second-order moments. This new class of periodic autoregressive conditional heteroscedasticity, or P-ARCH, models is directly related to the class o...

2002
Anders Rahbek Neil Shephard

In this paper we develop a time series model which allows long-term disequilibriums to have epochs of non-stationarity, giving the impression that long term relationships between economic variables have temporarily broken down, before they endogenously collapse back towards their long term relationship. This autoregressive root model is shown to be ergodic and covariance stationary under some r...

2014
Y. Liang A. Thavaneswaran B. Abraham Ricardas Zitikis

A class of martingale estimating functions is convenient and plays an important role for inference for nonlinear time series models. However, when the information about the first four conditional moments of the observed process becomes available, the quadratic estimating functions are more informative. In this paper, a general framework for joint estimation of conditional mean and variance para...

2009
J. Zhang D. Guégan

This paper develops a method for pricing bivariate contingent claims under General Autoregressive Conditionally Heteroskedastic (GARCH) process. As the association between the underlying assets may vary over time, the dynamic copula with time-varying parameter offers a better alternative to any static model for dependence structure and even to the dynamic copula model determined by dynamic depe...

2013
Jairo Cugliari

When considering the problem of forecasting a continuous-time stochastic process over an entire time-interval in terms of its recent past, the notion of Autoregressive Hilbert space processes (arh) arises. This model can be seen as a generalization of the classical autoregressive processes to Hilbert space valued random variables. Its estimation presents several challenges that were addressed b...

This paper investigates the relationship between inflation and growth uncertainty in Iran for the period of 1988-2008 by using quarterly data. We employ Generalized Autoregressive Conditional Heteroscedasticity in Mean (GARCH-M) model to estimate time-varying conditional residual variance of growth, as a standard measures of growth uncertainty. The empirical evidence shows that growth uncertain...

Journal: :Journal of econometrics 2010
Harry H Kelejian Ingmar R Prucha

This study develops a methodology of inference for a widely used Cliff-Ord type spatial model containing spatial lags in the dependent variable, exogenous variables, and the disturbance terms, while allowing for unknown heteroskedasticity in the innovations. We first generalize the GMM estimator suggested in Kelejian and Prucha (1998,1999) for the spatial autoregressive parameter in the disturb...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید