نتایج جستجو برای: generalized discrete fourier transform
تعداد نتایج: 438427 فیلتر نتایج به سال:
The discrete cosine transform (DCT) is a Fourier-related transform similar to the discrete Fourier transform (DFT), but using only real numbers. It is equivalent to a DFT of roughly twice the length, operating on real data with even symmetry (since the Fourier transform of a real and even function is real and even), where in some variants the input and/or output data are shifted by half a sampl...
Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importanc...
Abstract: In paper two types of the discrete cosine (and sine) transforms (DCT/DST) are analyzed. These transforms are useful for many applications. It is shown that if an operator, connected with the Discrete Fourier Transform (DFT), is referred to an appropriate basis it takes block-diagonal form. These blocks coincide with DCT-2/DST-2 for even dimensions of the signals’ space and with DCT6/D...
Fractional Fourier Transform, which is a generalization of the classical Fourier Transform, is a powerful tool for the analysis of transient signals. The discrete Fractional Fourier Transform Hamiltonians have been proposed in the past with varying degrees of correlation between their eigenvectors and Hermite Gaussian functions. In this paper, we propose a new Hamiltonian for the discrete Fract...
In this paper, the k-trigonometric functions over the Galois Field GF(q) are introduced and their main properties derived. This leads to the definition of the cask(.) function over GF(q), which in turn leads to a finite field Hartley Transform . The main properties of this new discrete transform are presented and areas for possible applications are mentioned.
Some estimates are proved for the generalized Fourier-Bessel transform in the space (L^2) (alpha,n)-index certain classes of functions characterized by the generalized continuity modulus.
In this paper we establish some new exact solutions regarding to the unsteady flow of a generalized Oldroyd-B fluid produced by a suddenly moved plate between two side walls perpendicular to the plate. The governing equation has been obtained through fractional calculus approach. Fourier sine transform and discrete Laplace transform have been used to obtained exact solutions. The solution of ve...
Matrices equivariant under a group of permutation matrices are considered. Such matrices typically arise in numerical applications where the computational domain exhibits geometrical symmetries. In these cases, group representation theory provides a powerful tool for block diagonalizing the matrix via the Generalized Fourier Transform. This technique yields substantial computational savings in ...
Abstract Integrable operators arise in random matrix theory, where they describe the asymptotic eigenvalue distribution of large self-adjoint random matrices from the generalized unitary ensembles. This paper considers discrete Tracy–Widom operators, and gives sufficient conditions for a discrete integrable operator to be the square of a Hankel matrix. Examples include the discrete Bessel kerne...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید