نتایج جستجو برای: generalized hyers ulam rassias stability
تعداد نتایج: 461501 فیلتر نتایج به سال:
We investigate the following generalized Cauchy functional equation f(αx+ βy) = αf(x) + βf(y) where α, β ∈ R \ {0}, and use a fixed point method to prove its generalized Hyers–Ulam–Rassias stability in Banach modules over a C∗-algebra.
The fixed point alternative methods are implemented to give generalized Hyers-Ulam-Rassias stability for the Pexiderized quadratic functional equation in the fuzzy version. This method introduces a metrical context and shows that the stability is related to some fixed point of a suitable operator.
One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...
In this paper, we establish the Hyers--Ulam--Rassias stability and the Hyers--Ulam stability of impulsive Volterra integral equation by using a fixed point method.
Abstract In this research work, a class of multi-term fractional pantograph differential equations (FODEs) subject to antiperiodic boundary conditions (APBCs) is considered. The ensuing problem involves proportional type delay terms and constitutes subclass known as pantograph. On using fixed point theorems due Banach Schaefer, some sufficient are developed for the existence uniqueness solution...
In 1940, Ulam [1] proposed the famous Ulam stability problem of linear mappings. In 1941, Hyers [2] considered the case of approximately additive mappings f : E→ E′, where E and E′ are Banach spaces and f satisfies Hyers inequality ‖ f (x+ y)− f (x)− f (y)‖ ≤ ε for all x, y ∈ E. It was shown that the limit L(x) = limn→∞ 2−n f (2nx) exists for all x ∈ E and that L : E→ E′ is the unique additive ...
in this paper, we use the denition of fuzzy normed spaces givenby bag and samanta and the behaviors of solutions of the additive functionalequation are described. the hyers-ulam stability problem of this equationis discussed and theorems concerning the hyers-ulam-rassias stability of theequation are proved on fuzzy normed linear space.
In this paper, using the direct method we study the generalized Hyers-Ulam-Rassias stability of the following quadratic functional equations (2 ) ( ) 6 ( ) f x y f x y f x and (3 ) ( ) 16 ( ) f x y f x y f x for the mapping f from normed linear space in to 2-Banach spaces.
In this paper, we establish the Hyers–Ulam–Rassias stability of ring homomorphisms and ring derivations on fuzzy Banach algebras.
In this paper, we define multi-normed spaces, and investigate some properties of multi-bounded mappings on multi-normed spaces. Moreover, we prove a generalized Hyers– Ulam–Rassias stability theorem associated to the Cauchy additive equation for mappings from linear spaces into multi-normed spaces.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید