نتایج جستجو برای: gorenstein homological dimension

تعداد نتایج: 114750  

Journal: :Comptes Rendus Mathematique 2022

Let R be a general ring. Duality pairs of R-modules were introduced by Holm-Jørgensen. Most examples satisfy further properties making them what we call semi-complete duality in this paper. We attach relative theory Gorenstein homological algebra to any given pair

Journal: :Science China-mathematics 2022

In this paper, we introduce the theory of local cohomology and duality to Notherian connected cochain DG algebras. We show that notion functor can be used detect Gorensteinness a homologically smooth algebra. For any Gorenstein locally finite algebra $${\cal A}$$ , define group homomorphism $${\rm{Hdet}}:{\rm{Au}}{{\rm{t}}_{dg}}\left( {\cal A} \right) \to {k^ \times }$$ called homological deter...

Let $(R, m)$ be a commutative noetherian local ring and let $Gamma$ be a finite group. It is proved that if $R$ admits a dualizing module, then the group ring $Rga$ has a dualizing bimodule as well. Moreover, it is shown that a finitely generated $Rga$-module $M$ has generalized Gorenstein dimension zero if and only if it has generalized Gorenstein dimension zero as an $R$-module.

2009
YINHUO ZHANG

The Calabi-Yau property of cocommutative Hopf algebras is discussed by using the homological integral, a recently introduced tool for studying infinite dimensional AS-Gorenstein Hopf algebras. It is shown that the skew-group algebra of a universal enveloping algebra of a finite dimensional Lie algebra g with a finite subgroup G of automorphisms of g is Calabi-Yau if and only if the universal en...

2009
SIAMAK YASSEMI

We prove versions of results of Foxby and Holm about modules of finite (Gorenstein) injective dimension and finite (Gorenstein) projective dimension with respect to a semidualizing module. We also verify two special cases of a question of Takahashi and White.

1998
VLADIMIR MAŞEK

R ring (always commutative and Noetherian) (R,m,k) local ring with maximal ideal m and k = R/m L,M,N, . . . R-modules (always finitely generated) M HomR(M,R), the dual of M D(M) the Auslander dual of M (Definition 2) σM : M wM∗∗ the natural evaluation map; KM = Ker(σM ), CM = Coker(σM ) G-dimR(M),G-dim(M) Gorenstein dimension of M (Definition 16) G-dim(M) <loc ∞ M has locally finite Gorenstein ...

2011
SATOSHI MURAI ERAN NEVO

We characterize the cd-indices of Gorenstein* posets of rank 5, equivalently the flag f -vectors of Gorenstein* order complexes of dimension 3. As a corollary, we characterize the f -vectors of Gorenstein* order complexes in dimensions 3 and 4. This characterization rise a speculated intimate connection between the f -vectors of flag homology spheres and the f -vectors of Gorenstein* order comp...

2009
Driss Bennis Najib Mahdou

In this paper, we investigate the change of rings theorems for the Gorenstein dimensions over arbitrary rings. Namely, by the use of the notion of strongly Gorenstein modules, we extend the well-known first, second, and third change of rings theorems for the classical projective and injective dimensions to the Gorenstein projective and injective dimensions, respectively. Each of the results est...

2011
ERAN NEVO

We characterize the cd-indices of Gorenstein* posets of rank 5, equivalently the flag f -vectors of Gorenstein* order complexes of dimension 3. As a corollary, we characterize the f -vectors of Gorenstein* order complexes in dimensions 3 and 4. This characterization rise a speculated intimate connection between the f -vectors of flag homology spheres and the f -vectors of Gorenstein* order comp...

2009
Edgar E. Enochs Zhaoyong Huang

In terms of the duality property of injective preenvelopes and flat precovers, we get an equivalent characterization of left Noetherian rings. For a left and right Noetherian ring R, we prove that the flat dimension of the injective envelope of any (Gorenstein) flat left R-module is at most the flat dimension of the injective envelope of RR. Then we get that the injective envelope of RR is (Gor...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید